【題目】四棱錐P﹣ABCD中,底面ABCD為矩形, 為BC的中點(diǎn),連接AE,BD,交點(diǎn)H,PH⊥平面ABCD,M為PD的中點(diǎn).
(1)求證:平面MAE⊥平面PBD;
(2)設(shè)PE=1,求二面角M﹣AE﹣C的余弦值.
【答案】
(1)證明:在矩形ABCD中,
∵△ABE~△DAB,
∴∠BAE=∠DAB,
∴∠BAB+∠ABD= ,∴BH⊥AE,
∵PH⊥平面ABCD,AE平面ABCD,
∴PH⊥AE,又∵BH∩PH=H,
BH,PH平面BPD,又∵AE平面MAE,
∴平面MAE⊥平面PBD.
(2)解:(2)由(1)知,HB,HE,HP兩兩垂直,
分別以HB,HE,HP所在直線為x,y,z軸建立如圖所示空間直角坐標(biāo)系,
則A(0,﹣ ,0),E(0, ,0),P(0,0, ),C(﹣ , ,0),
D(﹣ ,0,0),M(﹣ ,0, ),
=( , ,﹣ ), =( ,﹣ ,﹣ ),
設(shè)MAE的法向量 =(x,y,z),
則 ,
取x=1,得 =(1,0,4),
平面AEC的法向量 =(0,0,1),
設(shè)二面角M﹣AE﹣C的平面角為θ,
則cosθ= = = ,
∴二面角M﹣AE﹣C的余弦值為 .
【解析】(1)推導(dǎo)出BH⊥AE,PH⊥AE,從而AE⊥平面BPD,由此能證明平面MAE⊥平面PBD.(2)由HB,HE,HP兩兩垂直,分別以HB,HE,HP所在直線為x,y,z軸建立空間直角坐標(biāo)系,利用向量法能求出二面角M﹣AE﹣C的余弦值.
【考點(diǎn)精析】利用平面與平面垂直的判定對題目進(jìn)行判斷即可得到答案,需要熟知一個(gè)平面過另一個(gè)平面的垂線,則這兩個(gè)平面垂直.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知各項(xiàng)均不相等的等差數(shù)列{an}滿足a1=1,且a1 , a2 , a5成等比數(shù)列.
(1)求{an}的通項(xiàng)公式;
(2)若bn=(﹣1)n (n∈N*),求數(shù)列{bn}的前n項(xiàng)和Sn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=lnx+ ﹣1,a∈R.
(1)若關(guān)于x的不等式f(x)≤ x﹣1在[1,+∞)上恒成立,求a的取值范圍;
(2)設(shè)函數(shù)g(x)= ,若g(x)在[1,e2]上存在極值,求a的取值范圍,并判斷極值的正負(fù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= ,若函數(shù)g(x)=f(x)﹣t有三個(gè)不同的零點(diǎn)x1 , x2 , x3 , 且x1<x2<x3 , 則﹣ + + 的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖程序框圖的算法思路源于我國古代數(shù)學(xué)名著《九章算術(shù)》中的“更相減損術(shù)”.執(zhí)行該程序框圖,若輸入a,b分別為16,20,則輸出的a=( )
A.0
B.2
C.4
D.14
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了豎一塊廣告牌,要制造三角形支架,如圖,要求∠ACB=60°,BC的長度大于1米,且AC比AB長0.5米,為了穩(wěn)固廣告牌,要求AC越短越好,則AC最短為( )
A.(1+ )米
B.2米
C.(1+ )米
D.(2+ )米
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C:y=2x2 , 直線l:y=kx+2交C于A,B兩點(diǎn),M是線段AB的中點(diǎn),過M作x軸的垂線C于點(diǎn)N.
(1)證明:拋物線C在點(diǎn)N處的切線與AB平行;
(2)是否存在實(shí)數(shù)k使以AB為直徑的圓M經(jīng)過點(diǎn)N,若存在,求k的值,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=|2x+1|﹣|x﹣4|.
(1)解不等式f(x)>0;
(2)若f(x)+3|x﹣4|≥m對一切實(shí)數(shù)x均成立,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)是奇函數(shù),且滿足f(2﹣x)=f(x)(x∈R),當(dāng)0<x≤1時(shí),f(x)=lnx+2,則函數(shù)y=f(x)在(﹣2,4]上的零點(diǎn)個(gè)數(shù)是( )
A.7
B.8
C.9
D.10
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com