【題目】為了豎一塊廣告牌,要制造三角形支架,如圖,要求∠ACB=60°,BC的長(zhǎng)度大于1米,且AC比AB長(zhǎng)0.5米,為了穩(wěn)固廣告牌,要求AC越短越好,則AC最短為(
A.(1+ )米
B.2米
C.(1+ )米
D.(2+ )米

【答案】D
【解析】解:設(shè)BC的長(zhǎng)度為x米,AC的長(zhǎng)度為y米,則AB的長(zhǎng)度為(y﹣0.5)米, 在△ABC中,依余弦定理得:AB2=AC2+BC2﹣2ACBCcos∠ACB,
即(y﹣0.5)2=y2+x2﹣2yx× ,化簡(jiǎn),得y(x﹣1)=x2 ,
∵x>1,
∴x﹣1>0,
因此y=
y=(x﹣1)+ +2≥ +2,
當(dāng)且僅當(dāng)x﹣1= 時(shí),取“=”號(hào),
即x=1+ 時(shí),y有最小值2+
故選:D.

設(shè)BC的長(zhǎng)度為x米,AC的長(zhǎng)度為y米,依據(jù)題意可表示出AB的長(zhǎng)度,然后代入到余弦定理中求得x和y的關(guān)系式,利用基本不等式求得y的最小值,并求得取等號(hào)時(shí)x的值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知a>0,b>0,函數(shù)f(x)=|x+a|+|2x﹣b|的最小值為1.
(1)求證:2a+b=2;
(2)若a+2b≥tab恒成立,求實(shí)數(shù)t的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知( 5的常數(shù)項(xiàng)為15,則函數(shù)f(x)=log (x+1)﹣ 在區(qū)間[﹣ ,2]上的值域?yàn)?/span>

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知DP⊥y軸,點(diǎn)D為垂足,點(diǎn)M在線段DP的延長(zhǎng)線上,且滿足|DP|=|PM|,當(dāng)點(diǎn)P在圓x2+y2=3上運(yùn)動(dòng)時(shí)
(1)求點(diǎn)M的軌跡C的方程;
(2)直線l:x=my+3(m≠0)交曲線C于A、B兩點(diǎn),設(shè)點(diǎn)B關(guān)于x軸的對(duì)稱點(diǎn)為B1(點(diǎn)B1與點(diǎn)A不重合),且直線B1A與x軸交于點(diǎn)E. ①證明:點(diǎn)E是定點(diǎn);
②△EAB的面積是否存在最大值?若存在,求出最大值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】四棱錐P﹣ABCD中,底面ABCD為矩形, 為BC的中點(diǎn),連接AE,BD,交點(diǎn)H,PH⊥平面ABCD,M為PD的中點(diǎn).
(1)求證:平面MAE⊥平面PBD;
(2)設(shè)PE=1,求二面角M﹣AE﹣C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4﹣4;坐標(biāo)系與參數(shù)方程 已知曲線C1的參數(shù)方程是 (φ為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立坐標(biāo)系,曲線C2的坐標(biāo)系方程是ρ=2,正方形ABCD的頂點(diǎn)都在C2上,且A,B,C,D依逆時(shí)針次序排列,點(diǎn)A的極坐標(biāo)為(2, ).
(1)求點(diǎn)A,B,C,D的直角坐標(biāo);
(2)設(shè)P為C1上任意一點(diǎn),求|PA|2+|PB|2+|PC|2+|PD|2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題中的假命題是(
A.x0∈(0,+∞),x0<sinx0
B.x∈(﹣∞,0),ex>x+1
C.x>0,5x>3x
D.x0∈R,lnx0<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在斜三梭柱ABC﹣A1B1C1中,側(cè)面AA1C1C是菱形,AC1與A1C交于點(diǎn)O,E是棱AB上一點(diǎn),且OE∥平面BCC1B1
(1)求證:E是AB中點(diǎn);
(2)若AC1⊥A1B,求證:AC1⊥BC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為創(chuàng)建全國(guó)文明城市,某區(qū)向各事業(yè)行政單位征集“文明過(guò)馬路”義務(wù)督導(dǎo)員.從符合條件的600名志愿者中隨機(jī)抽取100名,按年齡作分組如下:[20,25),[25,30),[30,35),[35,40),[40,45],并得到如下頻率分布直方圖.
(Ⅰ)求圖中x的值,并根據(jù)頻率分布直方圖統(tǒng)計(jì)這600名志愿者中年齡在[30.40)的人數(shù);
(Ⅱ)在抽取的100名志愿者中按年齡分層抽取10名參加區(qū)電視臺(tái)“文明伴你行”節(jié)目錄制,再?gòu)倪@10名志愿者中隨機(jī)選取3名到現(xiàn)場(chǎng)分享勸導(dǎo)制止行人闖紅燈的經(jīng)歷,記這3名志愿者中年齡不低于35歲的人數(shù)為X,求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案