已知數(shù)列滿足:(其中常數(shù)).
(1)求數(shù)列的通項(xiàng)公式;
(2)當(dāng)時(shí),數(shù)列中是否存在不同的三項(xiàng)組成一個(gè)等比數(shù)列;若存在,求出滿足條件的三項(xiàng),若不存在,說明理由。
(1)(2)不存在這樣的三項(xiàng)使其組成等比數(shù)列
解析試題分析:(1)當(dāng)時(shí),,
當(dāng)時(shí),因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/8f/f/pc1r21.png" style="vertical-align:middle;" />
所以:
兩式相減得到:,即,又,
所以數(shù)列的通項(xiàng)公式是;
(2)當(dāng)時(shí),,假設(shè)存在成等比數(shù)列,
則.
整理得.
由奇偶性知r+t-2s=0.
所以,即,這與矛盾,
故不存在這樣的正整數(shù),使得成等比數(shù)列.
考點(diǎn):數(shù)列求通項(xiàng)及等比數(shù)列
點(diǎn)評:第一小題是由數(shù)列的前n項(xiàng)和求通項(xiàng),需注意分兩種情況討論,第二小題探索性題目,先假設(shè)滿足題意要求的項(xiàng)存在,看是否能推得矛盾,若無矛盾則假設(shè)成立,反之假設(shè)不成立
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列中,,.
(1)求數(shù)列的通項(xiàng)公式;
(2)若數(shù)列滿足,數(shù)列的前項(xiàng)和為,若不等式對一切恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
各項(xiàng)均為正數(shù)的等比數(shù)列{an}中,已知a2="8," a4="128," bn=log2an .
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{bn}的前n項(xiàng)和Sn
(3)求滿足不等式的正整數(shù)n的最大值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列滿足: ().
(1)求的值;
(2)求證:數(shù)列是等比數(shù)列;
(3)令,,如果對任意,都有,
求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)是等比數(shù)列的前項(xiàng)和,且,.
(1)求的通項(xiàng)公式;
(2)設(shè),求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)數(shù)列的前項(xiàng)和.
(1)證明數(shù)列是等比數(shù)列;
(2)若,且,求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)已知等比數(shù)列中,分別是某等差數(shù)列的第5項(xiàng)、第3項(xiàng)、第2項(xiàng),且公比
(1)求數(shù)列的通項(xiàng)公式;
(2)已知數(shù)列滿足:的前n項(xiàng)和
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)已知是首項(xiàng)為19,公差d=-2的等差數(shù)列,為的前n項(xiàng)和.(1)求通項(xiàng)公式及;
(2)設(shè)是首項(xiàng)為1,公比為3的等比數(shù)列,求數(shù)列的通項(xiàng)公式及其前n項(xiàng)和
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com