【題目】已知直線 的參數(shù)方程為 ,曲線 的參數(shù)方程為 ,設直線 與曲線 交于兩點 ,
(1)求 ;
(2)設 為曲線 上的一點,當 的面積取最大值時,求點 的坐標.

【答案】
(1)

解:由已知可得直線 的方程為 曲線 的方程為 ,

, ;


(2)

解:設 ,

,

最大,


【解析】本題主要考查了橢圓的參數(shù)方程,解決問題的關鍵是(1)把直線的參數(shù)方程與橢圓的參數(shù)方程化為普通方程,聯(lián)立方程組解得交點 的坐標,然后用兩點間距離公式可求得弦 的長;(2)由于 是固定的,因此 的面積取最大值,即點 到直線 的距離最大,故用參數(shù)方程表示曲線 上的點 的坐標 ,用點到直線距離公式求得 到直線 的距離 ,然后求 的最大值.
【考點精析】關于本題考查的橢圓的參數(shù)方程,需要了解橢圓的參數(shù)方程可表示為才能得出正確答案.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四邊形為菱形, , 相交于點, 平面, 平面, , 中點.

(Ⅰ)求證: 平面

(Ⅱ)求二面角的正弦值;

(Ⅲ)當直線與平面所成角為時,求異面直線所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線,直線傾斜角是且過拋物線的焦點,直線被拋物線截得的線段長是16,雙曲線 的一個焦點在拋物線的準線上,則直線軸的交點到雙曲線的一條漸近線的距離是( )

A. 2 B. C. D. 1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知O為坐標原點,向量 =(sinα,1), =(cosα,0), =(﹣sinα,2),點P是直線AB上的一點,且 =
(1)若O,P,C三點共線,求tanα的值;
(2)在(Ⅰ)條件下,求 +sin2α的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某調查機構對本市小學生課業(yè)負擔情況進行了調查,設平均每人每天做作業(yè)的時間為x分鐘.有1000名小學生參加了此項調查,調查所得數(shù)據(jù)用程序框圖處理,若輸出的結果是680,則平均每天做作業(yè)的時間在0~60分鐘內的學生的頻率是(

A.680
B.320
C.0.68
D.0.32

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校對高一年級學生寒假參加社區(qū)服務的次數(shù)進行了統(tǒng)計,隨機抽取了M名學生作為樣本,得到這M名學生參加社區(qū)服務的次數(shù),根據(jù)此數(shù)據(jù)作出了頻率分布統(tǒng)計表和頻率分布直方圖如圖:

分組

頻數(shù)

頻率

[10,15)

20

0.25

[15,20)

50

n

[20,25)

m

p

[25,30)

4

0.05

合計

M

N


(1)求表中n,p的值和頻率分布直方圖中a的值,并根據(jù)頻率分布直方圖估計該校高一學生寒假參加社區(qū)服務次數(shù)的中位數(shù);
(2)如果用分層抽樣的方法從樣本服務次數(shù)在[10,15)和[25,30)的人中共抽取6人,再從這6人中選2人,求2人服務次數(shù)都在[10,15)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中,且。

1)當時,求函數(shù)的單調區(qū)間;

2)設,若存在極大值,且對于的一切可能取值, 的極大值均小于0,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在一次國際學術會議上,來自四個國家的五位代表被安排坐在一張圓桌,為了使他們能夠自由交談,事先了解到的情況如下:

甲是中國人,還會說英語.

乙是法國人,還會說日語.

丙是英國人,還會說法語.

丁是日本人,還會說漢語.

戊是法國人,還會說德語.

則這五位代表的座位順序應為( )

A. 甲丙丁戊乙 B. 甲丁丙乙戊

C. 甲乙丙丁戊 D. 甲丙戊乙丁

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】李莊村電費收取有以下兩種方案供農戶選擇:
方案一:每戶每月收管理費2元,月用電不超過30度每度0.5元,超過30度時,超過部分按每度0.6元.
方案二:不收管理費,每度0.58元.
(1)求方案一收費L(x)元與用電量x(度)間的函數(shù)關系;
(2)李剛家九月份按方案一交費35元,問李剛家該月用電多少度?
(3)李剛家月用電量在什么范圍時,選擇方案一比選擇方案二更好?

查看答案和解析>>

同步練習冊答案