【題目】已知f(x)為一次函數(shù),g(x)為二次函數(shù),且f[g(x)]=g[f(x)].
(1)求f(x)的解析式;
(2)若y=g(x)與x軸及y=f(x)都相切,且g(0)= ,求g(x)的解析式.
【答案】(1);(2).
【解析】
(Ⅰ)設(shè)出f(x),g(x)的解析式,利用待定系數(shù)法求解.
(Ⅱ)根據(jù)y=g(x)與x軸及y=f(x)都相切,g(0)=,建立關(guān)系,利用判別式求解.
由題意,設(shè)f(x)=kx+m,g(x)=ax2+bx+c(a≠0)
∵f[g(x)]=g[f(x)].
∴k(ax2+bx+c)+m=a(kx+m)2+b(kx+m)+c,
解得:k=1,m=0
∴f(x)的解析式為f(x)=x
(Ⅱ)∵g(0)=,
∴c=
得g(x)=ax2+bx+
又∵y=g(x)與x軸,相切,
可得:4ac=b2,即…①
又∵y=g(x)與f(x)=x相切,
可得:ax2+bx+=x,即方程ax2+x(b﹣1)+=0只有一個解.
∴…②
由①②解得:b=,a=1
故得g(x)的解析式為g(x)=x2+x+.
科目:高中數(shù)學 來源: 題型:
【題目】某創(chuàng)業(yè)投資公司擬投資開發(fā)某種新能源產(chǎn)品,估計能獲得10萬元到1000萬元的投資收益.現(xiàn)準備制定一個對科研課題組的獎勵方案:獎金y(單位:萬元)隨投資收益x(單位:萬元)的增加而增加,且獎金不超過9萬元,同時獎金不超過投資收益的20%.
(1)若建立函數(shù)y=f(x)模型制定獎勵方案,試用數(shù)學語言表述該公司對獎勵函數(shù)f(x)模型的基本要求,并分析函數(shù)y= 是否符合公司要求的獎勵函數(shù)模型,并說明原因;
(2)若該公司采用模型函數(shù)y= 作為獎勵函數(shù)模型,試確定最小的正整數(shù)a的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】直三棱柱中,底面是邊長為2的正三角形, 是棱的中點,且.
(1)若點為棱的中點,求異面直線與所成角的余弦值;
(2)若點在棱上,且平面,求線段的長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的右焦點與拋物線的焦點重合,且該橢圓的離心率與雙曲線的離心率互為倒數(shù).
(1)求橢圓的方程;
(2)設(shè)直線與橢圓相交于不同的兩點,已知點的坐標為,點在線段的垂直平分線上,且,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)()在其定義域內(nèi)有兩個不同的極值點.
(Ⅰ)求實數(shù)的取值范圍;
(Ⅱ)記兩個極值點分別為, (),求證: .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知
(1)設(shè),,若函數(shù)存在零點,求a的取值范圍;
(2)若是偶函數(shù),求的值;
(3)在(2)條件下,設(shè),若函數(shù)與的圖象只有一個公共點,求實數(shù)b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱柱ABC﹣A1B1C1中,D是AC的中點,A1D⊥平面ABC,AB=BC,平面BB1D與棱A1C1交于點E.
(1)求證:AC⊥A1B;
(2)求證:平面BB1D⊥平面AA1C1C;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,角A,B,C的對邊分別是a,b,c,點(a,b)在4xcosB﹣ycosC=ccosB上.
(1)cosB的值;
(2)若 =3,b=3 ,求a和c.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com