已知拋物線的頂點為原點,其焦點到直線的距離為.設(shè)為直線上的點,過點作拋物線的兩條切線,其中為切點.
(Ⅰ)求拋物線的方程;
(Ⅱ)當(dāng)點為直線上的定點時,求直線的方程;
(Ⅲ)當(dāng)點在直線上移動時,求的最小值.
(1)  (2)  (3)

試題分析: (1)利用點到直線的距離公式直接求解C的值,便可確定拋物線方程;(2)利用求導(dǎo)的思路確定拋物線的兩條切線,借助均過點P,得到直線方程;(3)通過直線與拋物線聯(lián)立,借助韋達(dá)定理和拋物線定義將進(jìn)行轉(zhuǎn)化處理,通過參數(shù)的消減得到函數(shù)關(guān)系式是解題的關(guān)鍵,然后利用二次函數(shù)求最值,需注意變量的范圍.
試題解析:(1)依題意,解得(負(fù)根舍去)        (2分)
拋物線的方程為;                                         (4分)
(2)設(shè)點,,,由,即
∴拋物線在點處的切線的方程為,即.  (5分)
, ∴ .   ∵點在切線上,  ∴.       ①
同理, . ② (6分)
綜合①、②得,點的坐標(biāo)都滿足方程 . (7分)
∵經(jīng)過兩點的直線是唯一的,∴直線 的方程為,即; (8分)
(3)由拋物線的定義可知, (9分)
所以聯(lián)立,消去,
   (10分)
    (11分)
當(dāng)時,取得最小值為                          (12分)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

)如圖,橢圓、、為橢圓的頂點

(Ⅰ)若橢圓上的點到焦點距離的最大值為,最小值為,求橢圓方程;
(Ⅱ)已知:直線相交于兩點(不是橢圓的左右頂點),并滿足 試研究:直線是否過定點? 若過定點,請求出定點坐標(biāo),若不過定點,請說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知圓,若橢圓的右頂點為圓的圓心,離心率為.
(1)求橢圓的方程;
(2)若存在直線,使得直線與橢圓分別交于兩點,與圓分別交于兩點,點在線段上,且,求圓的半徑的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在直角坐標(biāo)系上取兩個定點,再取兩個動點
(I)求直線交點的軌跡的方程;
(II)已知,設(shè)直線:與(I)中的軌跡交于、兩點,直線 的傾斜角分別為,求證:直線過定點,并求該定點的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系中,點為動點,、分別為橢圓的左、右焦點.已知為等腰三角形.

(1)求橢圓的離心率;
(2)設(shè)直線與橢圓相交于兩點,是直線上的點,滿足,求點的軌跡
方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

以點F1(-1,0),F(xiàn)2(1,0)為焦點的橢圓C經(jīng)過點(1,)。
(I)求橢圓C的方程;
(II)過P點分別以為斜率的直線分別交橢圓C于A,B,M,N,求證: 使得

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)為雙曲線的左焦點,在軸上點的右側(cè)有一點,以為直徑的圓與雙曲線左、右兩支在軸上方的交點分別為,則的值為(     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知為兩個不相等的非零實數(shù),則方程所表示的曲線可能是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

雙曲線的離心率為(     )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案