【題目】已知數(shù)列的首項(xiàng),前項(xiàng)和為,且滿足

1)若數(shù)列為遞增數(shù)列,求實(shí)數(shù)的取值范圍;

2)若,數(shù)列滿足,,求數(shù)列的通項(xiàng)公式.

【答案】1;(2.

【解析】

1)先根據(jù)已知等式得到之間的關(guān)系,再根據(jù)遞推關(guān)系得到從第二項(xiàng)起數(shù)列的奇數(shù)項(xiàng)與數(shù)項(xiàng)與偶數(shù)項(xiàng)分別成等差數(shù)列,且公差為,進(jìn)而得到數(shù)列為遞增數(shù)列的條件,列出不等式組,解之可得實(shí)數(shù)的取值范圍;(2)結(jié)合(1)及錯(cuò)位相減減法求解即可.

1)由題意得,

,①

,②

所以,

所以,③

所以從第二項(xiàng)起數(shù)列的奇數(shù)項(xiàng)與偶數(shù)項(xiàng)分別成等差數(shù)列,且公差為

,由①式得,得,

,由②式得,得,

,由③式得,得

要使數(shù)列為遞增數(shù)列,則,

,解得

所以實(shí)數(shù)的取值范圍為

2)由(1)知,

,

當(dāng)時(shí),,

,

兩式相減得,

,即,

經(jīng)檢驗(yàn),上式對(duì)也適用,故

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)當(dāng)時(shí),求證:;

2)若不等式上恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)fx,若任意t∈(a1,a),使得ft)>ft+1),則實(shí)數(shù)a的取值范圍為______

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某同學(xué)在微信上查詢到近十年全國(guó)高考報(bào)名人數(shù)、錄取人數(shù)和山東夏季高考報(bào)名人數(shù)的折線圖,其中年的錄取人數(shù)被遮擋了.他又查詢到近十年全國(guó)高考錄取率的散點(diǎn)圖,結(jié)合圖表中的信息判定下列說(shuō)法正確的是(

A.全國(guó)高考報(bào)名人數(shù)逐年增加

B.年全國(guó)高考錄取率最高

C.年高考錄取人數(shù)約萬(wàn)

D.年山東高考報(bào)名人數(shù)在全國(guó)的占比最小

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,斜三棱柱中,是邊長(zhǎng)為2的正三角形,的中點(diǎn),平面,點(diǎn)上,,的交點(diǎn),且與平面所成的角為

1)求證:平面;

2)求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中e為自然對(duì)數(shù)的底數(shù).

1)若函數(shù)的圖象在點(diǎn)處的切線方程為,求實(shí)數(shù)a的值;

2)若函數(shù)2個(gè)不同的零點(diǎn),

①求實(shí)數(shù)a的取值范圍;

②求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù).

1)當(dāng)時(shí),討論函數(shù)的單調(diào)性;

2)當(dāng)時(shí),時(shí),恒成立,求正整數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 的離心率為,分別為的右頂點(diǎn)和上頂點(diǎn),且.

(Ⅰ)求橢圓的方程;

(Ⅱ)若,分別是軸負(fù)半軸,軸負(fù)半軸上的點(diǎn),且四邊形的面積為2,設(shè)直線的交點(diǎn)為,求點(diǎn)到直線的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中.

1)若,求函數(shù)的單調(diào)減區(qū)間;

2)若數(shù)的極值點(diǎn)是,求b、c的值;

3)若,曲線處的切線斜率為,求證:的極大值大于.

查看答案和解析>>

同步練習(xí)冊(cè)答案