【題目】已知.
(Ⅰ)當時,判斷的奇偶性,并說明理由;
(Ⅱ)當時,若,求的值;
(Ⅲ)若,且對任何不等式恒成立,求實數的取值范圍.
【答案】(Ⅰ)既不是奇函數,也不是偶函數;(Ⅱ)或;(Ⅲ)當時,的取值范圍是;當時,的取值范圍是;當時,的取值范圍是.
【解析】
試題(Ⅰ)對函數奇偶性的判斷,一定要結合函數特征先作大致判斷,然后再根據奇函數偶函數的定義作嚴格的證明.當時,,從解析式可以看出它既不是奇函數,也不是偶函數.對既不是奇函數,也不是偶函數的函數,一般取兩個特殊值說明.
(Ⅱ)當時,, 由得,這是一個含有絕對值符號的不等式,對這種不等式,一般先分情況去絕對值符號.這又是一個含有指數式的不等式,對這種不等式,一般將指數式看作一個整體,先求出指數式的值,然后再利用指數式求出的值.
(Ⅲ)不等式恒成立的問題,一般有以下兩種考慮,一是分離參數,二是直接求最值.在本題中,分離參數比較容易.分離參數時需要除以,故首先考慮的情況. 易得時,取任意實數,不等式恒成立.
,此時原不等式變?yōu)?/span>;即,這時應滿足:,所以接下來就求的最大值和的最小值.在求這個最大值和最小值時,因數還有一個參數,所以又需要對進行討論.
試題解析:(Ⅰ)當時,既不是奇函數也不是偶函數
∵,∴
所以既不是奇函數,也不是偶函數 3分
(Ⅱ)當時,, 由得
即或
解得
所以或8分
(Ⅲ)當時,取任意實數,不等式恒成立,
故只需考慮,此時原不等式變?yōu)?/span>;即
故
又函數在上單調遞增,所以;
對于函數
①當時,在上單調遞減,,又,
所以,此時的取值范圍是
②當,在上,,
當時,,此時要使存在,
必須有即,此時的取值范圍是
綜上,當時,的取值范圍是;
當時,的取值范圍是;
當時,的取值范圍是13分
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,曲線C的參數方程為(α為參數),在以坐標原點O為極點,x軸的正半軸為極軸的極坐標系中,點P的極坐標為,直線l的極坐標方程為.
(1)求直線l的直角坐標方程與曲線C的普通方程;
(2)若Q是曲線C上的動點,M為線段PQ的中點,直線l上有兩點A,B,始終滿足|AB|=4,求△MAB面積的最大值與最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設拋物線的焦點為,經過軸正半軸上點的直線交于不同的兩點和.
(1)若,求點的坐標;
(2)若,求證:原點總在以線段為直徑的圓的內部;
(3)若,且直線∥,與有且只有一個公共點,問:△的面積是否存在最小值?若存在,求出最小值,并求出點的坐標,若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某次高三年級模擬考試中,數學試卷有一道滿分10分的選做題,學生可以從A,B兩道題目中任選一題作答.某校有900名高三學生參加了本次考試,為了了解該校學生解答該選做題的得分情況,作為下一步教學的參考依據,計劃從900名考生的選做題成績中隨機抽取一個容量為10的樣本,為此將900名考生選做題的成績按照隨機順序依次編號為001~900.
(1)若采用系統(tǒng)抽樣法抽樣,從編號為001~090的成績中用簡單隨機抽樣確定的成績編號為025,求樣本中所有成績編號之和;
(2)若采用分層抽樣,按照學生選擇A題目或B題目,將成績分為兩層.已知該校高三學生有540人選做A題目,有360人選做B題目,選取的樣本中,A題目的成績平均數為5,方差為2,B題目的成績平均數為5.5,方差為0.25.
(i)用樣本估計該校這900名考生選做題得分的平均數與方差;
(ii)本選做題閱卷分值都為整數,且選取的樣本中,A題目成績的中位數和B題目成績的中位數都是5.5.從樣本中隨機選取兩個大于樣本平均值的數據做進一步調查,求取到的兩個成績來自不同題目的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知△ABC的三個內角A,B,C所對的邊分別是a,b,c,向量=(cos B,cos C),=(2a+c,b),且⊥.
(1)求角B的大;
(2)若b=,求a+c的范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】由中央電視臺綜合頻道和唯眾傳媒聯(lián)合制作的《開講啦》是中國首檔青年電視公開課.每期節(jié)目由一位知名人士講述自己的故事,分享他們對于生活和生命的感悟,給予中國青年現(xiàn)實的討論和心靈的滋養(yǎng),討論青年們的人生問題,同時也在討論青春中國的社會問題,受到青年觀眾的喜愛,為了了解觀眾對節(jié)目的喜愛程度,電視臺隨機調查了、兩個地區(qū)的100名觀眾,得到如下的列聯(lián)表,已知在被調查的100名觀眾中隨機抽取1名,該觀眾是地區(qū)當中“滿意”的觀眾的概率為0.15.
(1)現(xiàn)從100名觀眾中用分層抽樣的方法抽取20名進行問卷調查,則應抽取“滿意”的、地區(qū)的人數各是多少;
(2)在(1)的條件下,從抽取到“滿意”的人中隨機抽取2人,設“抽到的觀眾來自不同的地區(qū)”為事件,求事件的概率;
(3)完成上述表格,并根據表格判斷是否有的把握認為觀眾的滿意程度與所在地區(qū)有關系.
附:參考公式:.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com