【題目】如圖所示,已知點是拋物線上一定點,直線的傾斜角互補,且與拋物線另交于,兩個不同的點.
(1)求點到其準線的距離;
(2)求證:直線的斜率為定值.
【答案】(1)5;(2)
【解析】
(1)把點M的坐標代入拋物線的方程,求出點M的坐標,然后根據(jù)拋物線的定義求出點到其準線的距離;
(2)設出直線MA的方程,與拋物線方程聯(lián)立,得出A 的縱坐標,同理得出B的縱坐標,由已知條件結合點差法推導出AB的斜率表達式,把A,B的坐標代入,由此能證明直線AB的斜率為定值.
(1)∵M(a,4)是拋物線y2=4x上一定點,∴42=4a,a=4,
∵拋物線y2=4x的準線方程為x=﹣1,故點M到其準線的距離為5;
(2)由題知直線MA、MB的斜率存在且不為0,設直線MA的方程為:y﹣4=k(x﹣4);
聯(lián)立,設,,
,即,
∵直線的斜率互為相反數(shù),∴直線MB的方程為:,
同理可得:,由A,B兩點都在拋物線y2=4x上,∴ ,,
,
∴直線AB的斜率為定值.
科目:高中數(shù)學 來源: 題型:
【題目】某學校有1200名學生,隨機抽出300名進行調查研究,調查者設計了一個隨機化裝置,這是一個裝有大小、形狀和質量完全相同的10個紅球,10個綠球和10個白球的袋子.調查中有兩個問題:
問題1:你的陽歷生日月份是不是奇數(shù)?
問題2:你是否抽煙?
每個被調查者隨機從袋中摸出1個球(摸出后再放回袋中).若摸到紅球就如實回答第一個問題,若摸到綠球,則不回答任何問題;若摸到白球,則如實回答第二個問題.所有回答“是”的調查者只需往一個盒子中放一個小石子,回答“否”的被調查者什么也不用做.最后收集回來53個小石子,估計該學校吸煙的人數(shù)有多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知一個口袋有個白球,個黑球,這些球除顏色外全部相同,現(xiàn)將口袋中的球隨機逐個取出,并依次放入編號為,,,的抽屜內.
(1)求編號為的抽屜內放黑球的概率;
(2)口袋中的球放入抽屜后,隨機取出兩個抽屜中的球,求取出的兩個球是一黑一白的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于函數(shù),若存在實數(shù)對,使得等式對定義域中的任意都成立,則稱函數(shù)是“型函數(shù)”.
(1)若函數(shù)是“型函數(shù)”,且,求出滿足條件的實數(shù)對;
(2)已知函數(shù).函數(shù)是“型函數(shù)”,對應的實數(shù)對為,當時,.若對任意時,都存在,使得,試求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設,,以表示不是的因數(shù)的最小自然數(shù),例如.若,又可作等等.如果,那么叫做的長度.對一切,,用列舉法表示的長度構成的集合是______.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某單位有員工1000名,平均每人每年創(chuàng)造利潤10萬元.為增加企業(yè)競爭力,決定優(yōu)化產業(yè)結構,調整出名員工從事第三產業(yè),調整后平均每人每年創(chuàng)造利潤為萬元,剩下的員工平均每人每年創(chuàng)造的利潤可以提高.
(1)若要保證剩余員工創(chuàng)造的年總利潤不低于原來1000名員工創(chuàng)造的年總利潤,則最多調整出多少名員工從事第三產業(yè)?
(2)若要保證剩余員工創(chuàng)造的年總利潤不低于原來1000名員工創(chuàng)造的年總利潤條件下,若要求調整出的員工創(chuàng)造出的年總利潤始終不高于剩余員工創(chuàng)造的年總利潤,則的取值范圍是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】給出下列命題:
①正切函數(shù)圖象的對稱中心是唯一的;
②若函數(shù)的圖像關于直線對稱,則這樣的函數(shù)是不唯一的;
③若,是第一象限角,且,則;
④若是定義在上的奇函數(shù),它的最小正周期是,則.
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com