如圖,四邊形ABCD為正方形,QA⊥平面ABCD,PD∥QA,QA=AB=PD.

(1)證明:PQ⊥平面DCQ;
(2)求棱錐Q­ABCD的體積與棱錐P­DCQ的體積的比值.
(1)祥見解析; (2)1.

試題分析:(1)要證直線與平面垂直,只須證明直線與平面內(nèi)的兩條相交直線垂直即可,注意到QA⊥平面ABCD,所以有平面PDAQ⊥平面ABCD,且交線為AD,又因為四邊形ABCD為正方形,由面面垂直的性質(zhì)可得DC⊥平面PDAQ,從而有PQ⊥DC,又因為PD∥QA,且QA=AB=PD ,所以四邊形PDAQ為直角梯形,利用勾股定理的逆定理可證PQ⊥QD;從而可證 PQ⊥平面DCQ;(2)設AB=a,則由(1)及已知條件可用含a的式子表示出棱錐Q-ABCD的體積和棱錐P-DCQ的體積從而就可求出其比值.
試題解析:(1)證明:由條件知PDAQ為直角梯形.
因為QA⊥平面ABCD,所以平面PDAQ⊥平面ABCD,交線為AD.
又四邊形ABCD為正方形,DC⊥AD,
所以DC⊥平面PDAQ.可得PQ⊥DC.
在直角梯形PDAQ中可得DQ=PQ=PD,
則PQ⊥QD.所以PQ⊥平面DCQ.
(2)設AB=a.由題設知AQ為棱錐Q­ABCD的高,所以棱錐Q-ABCD的體積V1a3.
由(1)知PQ為棱錐P-DCQ的高,而PQ=a,△DCQ的面積為a2,
所以棱錐P-DCQ的體積V2a3.
故棱錐Q-ABCD的體積與棱錐P-DCQ的體積的比值為1.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,正方形ADEF與梯形ABCD所在平面互相垂直,AD⊥CD,AB//CD,AB=AD=,點M在線段EC上且不與E、C垂合.
(1)當點M是EC中點時,求證:BM//平面ADEF;
(2)當平面BDM與平面ABF所成銳二面角的余弦值為時,求三棱錐M—BDE的體積

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

某幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.
16π
3
B.
20π
3
C.
40π
3
D.5π

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知某幾何體的三視圖如圖所示,其中俯視圖中的曲線是一段半圓弧,則這個幾何體的表面積是( 。
A.12-πB.12+πC.14-πD.14+π

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知水平放置的△ABC是按“斜二測畫法”得到如圖所示的直觀圖,其中B′O′=C′O′=1,A′O′=
3
2
,那么原△ABC的面積是( 。
A.
3
B.2
2
C.
3
/2
D.
3
/4

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

水平放置的△ABC的斜二測直觀圖如圖所示,已知A′C′=3,B′C′=2,則AB邊上的中線的實際長度為______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知某個幾何體的三視圖如下(主視圖的弧線是半圓),根據(jù)圖中標出的尺寸(單位:cm),可得這個幾何體的體積是    .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

正四棱錐的頂點都在同一球面上,若該棱錐的高為4,底面邊長為2,則該球的表面積是(    )
A.B.16C.9D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

圓臺上、下底面面積分別是π,4π,側(cè)面積是6π,這個圓臺的體積是________.

查看答案和解析>>

同步練習冊答案