已知函數(shù),,其中.
(1)若是函數(shù)的極值點(diǎn),求實(shí)數(shù)的值;
(2)若對(duì)任意的(為自然對(duì)數(shù)的底數(shù))都有成立,求實(shí)數(shù)的取值范圍.
(1);(2).
解析試題分析:(1)利用函數(shù)極值點(diǎn)的導(dǎo)數(shù)等于0,且此點(diǎn)的左側(cè)和右側(cè)導(dǎo)數(shù)的符號(hào)相反,求得實(shí)數(shù)的值;(2)問題等價(jià)于對(duì)任意的時(shí),都有,分類討論,利用導(dǎo)數(shù)的符號(hào)判斷函數(shù)的單調(diào)性,由單調(diào)性求出函數(shù)的最小值及的最大值,根據(jù)它們之間的關(guān)系求出實(shí)數(shù)的取值范圍.
試題解析:(1)∵,其定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/62/0/et8p81.png" style="vertical-align:middle;" />,∴.
∵是函數(shù)的極值點(diǎn),∴,即.
∵,∴.
經(jīng)檢驗(yàn)當(dāng)時(shí),是函數(shù)的極值點(diǎn),∴.
(2)對(duì)任意的都有成立等價(jià)于對(duì)任意的,都有.
當(dāng)時(shí),.
∴函數(shù)在上是增函數(shù),∴.
∵,且,.
①當(dāng)且時(shí),,
∴函數(shù)在上是增函數(shù),∴.
由,得a≥,
又,∴不合題意.
②當(dāng)時(shí),
若,則,
若,則.
∴函數(shù)在上是減函數(shù),在上是增函數(shù).
∴.
由,得.又,∴.
③當(dāng)且時(shí),,
函數(shù)在上是減函數(shù).
∴.
由,得.又,∴.
綜上所述,的取值范圍為.
考點(diǎn):1、函數(shù)在某點(diǎn)取得極值的條件;2、利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)的圖像與直線恰有兩個(gè)交點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)若,討論函數(shù)在區(qū)間上的單調(diào)性;
(2)若且對(duì)任意的,都有恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)在點(diǎn)(1,1)處的切線方程;
(2)若在y軸的左側(cè),函數(shù)的圖象恒在的導(dǎo)函數(shù)圖象的上方,求k的取值范圍;
(3)當(dāng)k≤-l時(shí),求函數(shù)在[k,l]上的最小值m。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)在上是單調(diào)遞減函數(shù),
方程無實(shí)根,若“或”為真,“且”為假,求的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)f(x)定義在(0,+∞)上,f(1)=0,導(dǎo)函數(shù),.
(1)求的單調(diào)區(qū)間和最小值;
(2)討論與的大小關(guān)系;
(3)是否存在x0>0,使得|g(x)﹣g(x0)|<對(duì)任意x>0成立?若存在,求出x0的取值范圍;若不存在請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)="xlnx" (x 1)(ax a+1)(a∈R).
(1)若a=0,判斷f(x)的單調(diào)性;.
(2)若x>1時(shí),f(x)<0恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知為函數(shù)圖象上一點(diǎn),O為坐標(biāo)原點(diǎn),記直線的斜率.
(1)若函數(shù)在區(qū)間上存在極值,求實(shí)數(shù)m的取值范圍;
(2)設(shè),若對(duì)任意恒有,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=2ax--(2+a)lnx(a≥0).
(1)當(dāng)a=0時(shí),求f(x)的極值;
(2)當(dāng)a>0時(shí),討論f(x)的單調(diào)性;
(3)若對(duì)任意的a∈(2,3),x1,x2∈[1,3],恒有(m-ln3)a-2ln3>|f(x1)-f(x2)|成立,求實(shí)數(shù)m的取值范圍。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com