已知函數(shù)f(x)="xlnx" (x 1)(ax a+1)(a∈R).
(1)若a=0,判斷f(x)的單調(diào)性;.
(2)若x>1時,f(x)<0恒成立,求a的取值范圍.
(1)單調(diào)減區(qū)間為(0,1),單調(diào)增區(qū)間為(1,+);(2).
解析試題分析:(1)首先求導(dǎo),然后根據(jù)導(dǎo)數(shù)的性質(zhì)求出原函數(shù)的單調(diào)區(qū)間即可.
(2)設(shè)則a=0時,由(1)顯然不成立;然后根據(jù)導(dǎo)函數(shù)的性質(zhì),求滿足h(x)的最大值小于0的a的取值范圍即可.(可分,,三種情況去驗(yàn)證.)
分,,,求時,h(x)的最大值小于0即可,
試題解析:(1)若,,
為減函數(shù),為增函數(shù).
(2)在恒成立.
若,,
為增函數(shù).
即不成立;不成立.
,在恒成立,
不妨設(shè)
,,
若,則,,,為增函數(shù),(不合題意);
若,,,為增函數(shù),(不合題意);
若,,,為減函數(shù),(符合題意).
綜上所述若時,恒成立,則.
考點(diǎn):1.函數(shù)的導(dǎo)數(shù);2.單數(shù)的性質(zhì);
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),.
(1)當(dāng)時,求的單調(diào)區(qū)間;
(2)已知點(diǎn)和函數(shù)圖象上動點(diǎn),對任意,直線傾斜角都是鈍角,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)在與時都取得極值
(1)求的值與函數(shù)的單調(diào)區(qū)間
(2)若對,不等式恒成立,求的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),,其中.
(1)若是函數(shù)的極值點(diǎn),求實(shí)數(shù)的值;
(2)若對任意的(為自然對數(shù)的底數(shù))都有成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),()
(1)對于函數(shù)中的任意實(shí)數(shù)x,在上總存在實(shí)數(shù),使得成立,求實(shí)數(shù)的取值范圍
(2)設(shè)函數(shù),當(dāng)在區(qū)間內(nèi)變化時,
(1)求函數(shù)的取值范圍;
(2)若函數(shù)有零點(diǎn),求實(shí)數(shù)m的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知.
(1)求函數(shù)在上的最小值;
(2)對一切恒成立,求實(shí)數(shù)的取值范圍;
(3)證明:對一切,都有成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
定義在實(shí)數(shù)集上的函數(shù).
⑴求函數(shù)的圖象在處的切線方程;
⑵若對任意的恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)當(dāng)且時,證明:;
(2)若對,恒成立,求實(shí)數(shù)的取值范圍;
(3)當(dāng)時,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù),若函數(shù)在處與直線相切,
(1)求實(shí)數(shù),的值;(2)求函數(shù)上的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com