【題目】已知函數(shù)對一切實數(shù)都有,且當時,,又.
(1)判斷該函數(shù)的奇偶性并說明理由;、
(2)試判斷該函數(shù)在上的單調性;
(3)求在區(qū)間的最大值和最小值.
科目:高中數(shù)學 來源: 題型:
【題目】某商店銷售10臺A型和20臺B型電腦的利潤為4000元,銷售20臺A型和10臺B型電腦的利潤為3500元.
(1)求每臺A型電腦和B型電腦的銷售利潤;
(2)該商店計劃一次購進兩種型號的電腦共100臺,其中B型電腦的進貨量不超過A型電腦的2倍。設購進A掀電腦x臺,這100臺電腦的銷售總利潤為y元。
①求y與x的關系式;
②該商店購進A型、B型各多少臺,才能使銷售利潤最大?
(3)實際進貨時,廠家對A型電腦出廠價下調m(0<m<100)元,且限定商店最多購進A型電腦70臺。若商店保持兩種電腦的售價不變,請你以上信息及(2)中的條件,設計出使這100臺電腦銷售總利潤最大的進貨方案。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司為確立下一年度投入某種產品的宣傳費,需了解年宣傳費(單位:千元)對年銷售量(單位: )和年利潤(單位:千元)的影響.對近年的宣傳費和年銷售量數(shù)據(jù)作了初步處理,得到下面的散點圖及一些統(tǒng)計量的值.
表中
(Ⅰ)根據(jù)散點圖判斷, 與哪一個適宜作為年銷售量關于年宣傳費的回歸方程類型?(給出判斷即可,不必說明理由)
(Ⅱ)根據(jù)(Ⅰ)的判斷結果及表中數(shù)據(jù),建立關于的回歸方程;
(Ⅲ)已知這種產品的年利率與的關系為.根據(jù)(Ⅱ)的結果回答下列問題:
(i)年宣傳費時,年銷售量及利潤的預報值是多少?
(ii)年宣傳費為何值時,年利率的預報值最大?
附:對于一組數(shù)據(jù)……,其回歸線的斜率和截距的最小二乘法估計分別為: ,
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本小題滿分14分)
已知函數(shù)(為常數(shù))的圖像與軸交于點,曲線在點處的切線斜率為.
(1)求的值及函數(shù)的極值;
(2)證明:當時,
(3)證明:對任意給定的正數(shù),總存在,使得當時,恒有
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】用0,1,2, 3,4,5這六個數(shù)字:
(1)能組成多少個無重復數(shù)字的四位偶數(shù)?
(2)能組成多少個無重復數(shù)字且為5的倍數(shù)的五位數(shù)?
(3)能組成多少個無重復數(shù)字且比1325大的四位數(shù)?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于函數(shù)f(x),若存在x0∈R,使得f(x0)=x0成立,則稱x0為f(x)的天宮一號點.已知函數(shù)f(x)=ax2+(b-7)x+18的兩個天宮一號點分別是-3和2.
(1)求a,b的值及f(x)的表達式;
(2)當函數(shù)f(x)的定義域是[t,t+1]時,求函數(shù)f(x)的最大值g(t).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù), , 為自然對數(shù)的底數(shù).
(Ⅰ)若函數(shù)存在兩個零點,求的取值范圍;
(Ⅱ)若對任意, , 恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)為其定義域內的奇函數(shù).
(1)求實數(shù)的值;
(2)求不等式的解集;
(3)證明: 為無理數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com