【題目】已知函數(shù)f(x)=4x2﹣4ax+a2﹣2a+2在區(qū)間[0,2]上有最小值3,求實(shí)數(shù)a的值.

【答案】

【解析】試題分析:確定二次函數(shù)的最值,首先要確定其在定義域上的單調(diào)性,本題中二次函數(shù)對稱軸為,因此首先討論對稱軸位置的三種情況:≤0,0<<2,≥2,從而確定其單調(diào)性,將最值轉(zhuǎn)化為用a表示的關(guān)系式,求解a

試題解析:∵fx)=4x22a2

當(dāng)≤0,即a≤0時,函數(shù)fx)在[0,2]上是增函數(shù).

∴fxminf0)=a22a2

a22a23,得a

∵a≤0∴a1

當(dāng)0<<2,即0<a<4時,

fxminf)=-2a2

由-2a23,得a=-0,4),舍去.

當(dāng)≥2,即a≥4時,函數(shù)fx)在[0,2]上是減函數(shù),

fxminf2)=a210a18

a210a183,得a

∵a≥4,∴a5

綜上所述,a1a5

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種產(chǎn)品的廣告費(fèi)支出與銷售額(單位:萬元)之間有如下對應(yīng)數(shù)據(jù):

(1)求回歸直線方程;

(2)試預(yù)測廣告費(fèi)支出為萬元時,銷售額多大?

(3)在已有的五組數(shù)據(jù)中任意抽取兩組,求至少有一組數(shù)據(jù)其預(yù)測值與實(shí)際值之差的絕對值不超過的概率.(參考數(shù)據(jù): .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一鮮花店一個月(30天)某種鮮花的日銷售量與銷售天數(shù)統(tǒng)計如下:

日銷售量(枝)

0~49

50~99

100~149

150~199

200~250

銷售天數(shù)(天)

3天

3天

15天

6天

3天

將日銷售量落入各組區(qū)間的頻率視為概率.

(1)試求這30天中日銷售量低于100枝的概率;

(2)若此花店在日銷售量低于100枝的6天中選擇2天作促銷活動,求這2天的日銷售量都低于50枝的概率(不需要枚舉基本事件).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法:

①分類變量的隨機(jī)變量越大,說明“有關(guān)系”的可信度越大.

②以模型去擬合一組數(shù)據(jù)時,為了求出回歸方程,設(shè),將其變換后得到線性方程,則的值分別是和0.3.

③根據(jù)具有線性相關(guān)關(guān)系的兩個變量的統(tǒng)計數(shù)據(jù)所得的回歸直線方程為中,

.正確的個數(shù)是( )

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn),圓

(1)若過點(diǎn)的圓的切線只有一條,求的值及切線方程;

(2)若過點(diǎn)且在兩坐標(biāo)軸上截距相等的直線與圓相切,求的值及切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)對一切實(shí)數(shù)都有,且當(dāng)時,,又.

(1)判斷該函數(shù)的奇偶性并說明理由;、

(2)試判斷該函數(shù)在上的單調(diào)性;

(3)求在區(qū)間的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在棱長均相等的正三棱柱ABCA1B1C1中,D為BB1的中點(diǎn),F(xiàn)在AC1上,且DF⊥AC1,則下述結(jié)論:

①AC1⊥BC;

②AF=FC1;

③平面DAC1⊥平面ACC1A1,其中正確的個數(shù)為( )

A.0 B.1

C.2 D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A={x|2-a≤x≤2+a},B={x|x≤1或x≥4}.

(1)當(dāng)a=3時,求A∩B;

(2)若a>0,且A∩B=,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),若

(1)求函數(shù)的解析式;

(2)畫出函數(shù)的圖象,并說出函數(shù)的單調(diào)區(qū)間;

(3)若,求相應(yīng)的值.

查看答案和解析>>

同步練習(xí)冊答案