已知向量,,,,,為正實(shí)數(shù).
(Ⅰ)若,求的值;
(Ⅱ)若,求的值;
(Ⅲ)當(dāng)時(shí),若,試確定與的關(guān)系式.
(Ⅰ);(Ⅱ);(Ⅲ)。
解析試題分析:(Ⅰ),, 2分
. 3分
(Ⅱ),, 4分
, 5分
. 6分
(Ⅲ) 當(dāng)時(shí),, .
則 =, 8分
. 9分
考點(diǎn):向量平行的條件;向量垂直的條件;平面向量的數(shù)量積。
點(diǎn)評(píng):熟記向量平行和垂直的條件,設(shè) :
非零向量垂直的充要條件: ;
向量共線(xiàn)的充要條件:。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分14分) 在四邊形中,已知,,.
(1)若四邊形是矩形,求的值;
(2)若四邊形是平行四邊形,且,求與夾角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知是同一平面內(nèi)的三個(gè)向量,其中.
(1)若,且,求:的坐標(biāo)
(2)若,且與垂直,求與的夾角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,設(shè)、是平面內(nèi)相交成角的兩條數(shù)軸,、分別是與軸、
軸正方向同向的單位向量。若向量,則把有序?qū)崝?shù)對(duì)叫做向量在坐標(biāo)系中的坐標(biāo)。若,則=
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知,點(diǎn)B是軸上的動(dòng)點(diǎn),過(guò)B作AB的垂線(xiàn)交軸于點(diǎn)Q,若
,.
(1)求點(diǎn)P的軌跡方程;
(2)是否存在定直線(xiàn),以PM為直徑的圓與直線(xiàn)的相交弦長(zhǎng)為定值,若存在,求出定直線(xiàn)方程;若不存在,請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分12分)如圖所示,中,,,,
(1)試用向量,來(lái)表示.
(2)AM交DN于O點(diǎn),求AO:OM的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com