設(shè)在x=1處有極小值-1,
(1)試求的值;  (2)求出的單調(diào)區(qū)間.

(1);(2)單調(diào)增區(qū)間(-∞,-)和(1,+∞),減區(qū)間為(-,1).

解析試題分析:(1)由已知x=1處有極小值-1,點(diǎn)(1,-1)在函數(shù)f(x)上,得方程組解之可得a、b.(2)由(1)得到f(x)=x3-x2-x,(x)=3x2-2x-1=3(x+),分別解出函數(shù)的增減區(qū)間.
(1)對(duì)函數(shù)求導(dǎo)得 ,由題意知解之得(2)將(1)中求得的a,b代入得f(x)=x3-x2-x,(x)=3x2-2x-1=3(x+)(x-1)當(dāng)(x)>0時(shí),x>1或x<-,當(dāng)(x)<0時(shí),-<x<1∴函數(shù)f(x)的單調(diào)增區(qū)間為(-∞,-)和(1,+∞),減區(qū)間為(-,1).
考點(diǎn):1、函數(shù)的單調(diào)性與導(dǎo)數(shù);2、函數(shù)在某點(diǎn)取得極值的條件.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某分公司經(jīng)銷某種品牌產(chǎn)品,每件產(chǎn)品的成本為元,并且每件產(chǎn)品需向總公司交元的管理費(fèi),預(yù)計(jì)當(dāng)每件產(chǎn)品的售價(jià)為元()時(shí),一年的銷售量為萬(wàn)件.
(1)求該分公司一年的利潤(rùn)(萬(wàn)元)與每件產(chǎn)品的售價(jià)的函數(shù)關(guān)系式;
(2)當(dāng)每件產(chǎn)品的售價(jià)為多少元時(shí),該分公司一年的利潤(rùn)最大?并求出的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),為常數(shù).
(1)若函數(shù)處的切線與軸平行,求的值;
(2)當(dāng)時(shí),試比較的大;
(3)若函數(shù)有兩個(gè)零點(diǎn),試證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)f(x)=alnx+bx2圖象上點(diǎn)P(1,f(1))處的切線方程為2x-y-3=0.
(1)求函數(shù)y=f(x)的解析式;
(2)函數(shù)g(x)=f(x)+m-ln4,若方程g(x)=0在[,2]上恰有兩解,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)f(x)=x2-4,設(shè)曲線y=f(x)在點(diǎn)(xn,f(xn))處的切線與x軸的交點(diǎn)為(xn+1,0)(n∈N +),其中xn為正實(shí)數(shù).
(1)用xn表示xn+1
(2)若x1=4,記an=lg,證明數(shù)列{an}成等比數(shù)列,并求數(shù)列{xn}的通項(xiàng)公式;
(3)若x1=4,bn=xn-2,Tn是數(shù)列{bn}的前n項(xiàng)和,證明Tn<3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)f(x)=ln x-ax+1在x=2處的切線斜率為-.
(1)求實(shí)數(shù)a的值及函數(shù)f(x)的單調(diào)區(qū)間;
(2)設(shè)g(x)=,對(duì)?x1∈(0,+∞),?x2∈(-∞,0)使得f(x1)≤g(x2)成立,求正實(shí)數(shù)k的取值范圍;
(3)證明: ++…+<(n∈N*,n≥2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù) ,
(1)當(dāng)  時(shí),求函數(shù)  的最小值;
(2)當(dāng) 時(shí),求證:無(wú)論取何值,直線均不可能與函數(shù)相切;
(3)是否存在實(shí)數(shù),對(duì)任意的 ,且,有恒成立,若存在求出的取值范圍,若不存在,說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(2013•浙江)已知a∈R,函數(shù)f(x)=2x3﹣3(a+1)x2+6ax
(Ⅰ)若a=1,求曲線y=f(x)在點(diǎn)(2,f(2))處的切線方程;
(Ⅱ)若|a|>1,求f(x)在閉區(qū)間[0,|2a|]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)的圖像與直線恰有兩個(gè)交點(diǎn),求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案