【題目】從下面①②③三個(gè)條件中任選兩個(gè),根據(jù)你選擇的條件確定一條直線,判斷直線與圓的位置關(guān)系.

①過(guò)點(diǎn);②斜率為;③在軸和軸上的截距相等.

【答案】選擇①②,直線與圓相切;選擇①③,直線與圓相離;選擇②③,直線與圓相交.

【解析】

根據(jù)所選組合,求出直線的方程,計(jì)算出圓心到直線的距離,并與圓的半徑進(jìn)行大小比較,即可得出直線與圓的位置關(guān)系.

選擇①②:直線的方程為,即.

的圓心為,半徑為.

圓心到直線的距離,因?yàn)?/span>,所以直線與圓相切;

選擇①③:由題知直線軸和軸上的截距都為,

所以直線的方程為,即.

的圓心為,半徑為.

圓心到直線的距離,因?yàn)?/span>,所以直線與圓相離;

選擇②③:根據(jù)條件,直線必過(guò)原點(diǎn),所以方程為,即.

的圓心為,半徑為.

圓心到直線的距離,因?yàn)?/span>,所以直線與圓相交.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將邊長(zhǎng)為2的正沿著高折起,使,若折起后四點(diǎn)都在球的表面上,則球的表面積為(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)有初中學(xué)生1800人,高中學(xué)生1200人. 為了解學(xué)生本學(xué)期課外閱讀時(shí)間,現(xiàn)采用分層抽樣的方法,從中抽取了100名學(xué)生,先統(tǒng)計(jì)了他們課外閱讀時(shí)間,然后按“初中學(xué)生”和“高中學(xué)生”分為兩組,再將每組學(xué)生的閱讀時(shí)間(單位:小時(shí))分為5組:,,,,并分別加以統(tǒng)計(jì),得到如圖所示的頻率分布直方圖.

(Ⅰ)寫出的值;試估計(jì)該校所有學(xué)生中,閱讀時(shí)間不小于30個(gè)小時(shí)的學(xué)生人數(shù);

(Ⅱ)從閱讀時(shí)間不足10個(gè)小時(shí)的樣本學(xué)生中隨機(jī)抽取2人,求至少抽到1名高中生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知四邊形的直角梯形,,,為線段的中點(diǎn),平面,為線段上一點(diǎn)(不與端點(diǎn)重合).

(Ⅰ)若,

(i)求證:平面;

(ii)求直線與平面所成的角的大;

(Ⅱ)否存在實(shí)數(shù)滿足,使得平面與平面所成的銳角為,若存在,確定的值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正方形的邊長(zhǎng)為4,E,F分別為,的中點(diǎn),以為棱將正方形折成如圖所示的的二面角,點(diǎn)M在線段.

1)若M的中點(diǎn),且直線與由A,D,E三點(diǎn)所確定平面的交點(diǎn)為G,試確定點(diǎn)G的位置,并證明直線;

2)是否存在M,使得直線與平面所成的角為;若存在,求此時(shí)的值,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,多面體ABCDEF中,已知平面ABCD是邊長(zhǎng)為3的正方形,,,EF到平面ABCD的距離為2,則該多面體的體積V為(

A.B.5C.6D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四棱錐中,的交點(diǎn),平面是正三角形,.

1)求異面直線所成角的大;

2)若點(diǎn)為棱上一點(diǎn),且平面,求的值;

3)求證:平面平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知四棱錐的底面是直角梯形,,的中點(diǎn),.

1)證明:平面;

2)若與平面所成的角為,試問(wèn)在側(cè)面內(nèi)是否存在一點(diǎn),使得平面?若存在,求出的長(zhǎng)度;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】個(gè)編號(hào)為、、、的不同小球全部放入個(gè)編號(hào)為、、、個(gè)不同盒子中.求:

1)每個(gè)盒至少一個(gè)球,有多少種不同的放法?

2)恰好有一個(gè)空盒,有多少種不同的放法?

3)每盒放一個(gè)球,并且恰好有一個(gè)球的編號(hào)與盒子的編號(hào)相同,有多少種不同的放法?

4)把已知中個(gè)不同的小球換成四個(gè)完全相同的小球(無(wú)編號(hào)),其余條件不變,恰有一個(gè)空盒,有多少種不同的放法?

查看答案和解析>>

同步練習(xí)冊(cè)答案