18.△ABC中,D為BC邊的中點,tan∠BAD•tan∠C=1,則△ABC是等腰或直角三角形.

分析 由tan∠BAD•tan∠C=1,可得∠DAC+∠ABD=$\frac{π}{2}$.在△ADC中,$\frac{CD}{sin∠DAC}$=$\frac{AD}{sinC}$,在△ABD中,$\frac{BD}{sin∠BAD}$=$\frac{AD}{sin∠ABD}$,可得sin2C=sin2∠ABD,∠C=∠ABD,或∠C+∠ABD=$\frac{π}{2}$,即可得解.

解答 解:由tan∠BAD•tan∠C=1,
∴∠BAD+∠C=$\frac{π}{2}$,
∴∠DAC+∠ABD=$\frac{π}{2}$.
在△ADC中,$\frac{CD}{sin∠DAC}$=$\frac{AD}{sinC}$,
在△ABD中,$\frac{BD}{sin∠BAD}$=$\frac{AD}{sin∠ABD}$,
可得sin2C=sin2∠ABD,
∴∠C=∠ABD,或∠C+∠ABD=$\frac{π}{2}$,
∴△ABC為等腰三角形或直角三角形.
故答案為:等腰或直角.

點評 本題考查了同角三角函數(shù)基本關(guān)系式在解三角形中的應(yīng)用,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若a>b,則下列正確的是(  )
1.a(chǎn)2>b2    2.a(chǎn)c>bc    3.a(chǎn)c2>bc2  4.a(chǎn)-c>b-c.
A.4B.2,3C.1,4D.1,2,3,4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.若(1+x)5=a0+a1x+a2x2+…+a5x5,則a1+a2+…+a5=31.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知一個空間幾何體的三視圖如圖所示,根據(jù)圖中標(biāo)出的尺寸,可得這個幾何體的體積是4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若集合A={x|2x>x2},B={y|y=2x,x∈A},則集合A∩B等于( 。
A.(0,2)B.(0,4)C.(1,2)D.(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.函數(shù)y=2$\sqrt{x}$+1的值域為[1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)是二次函數(shù),且f(0)=2,f(x-1)-f(x)=2x+4,求函數(shù)f(x)的解析式,并寫出其單調(diào)區(qū)間(不證明).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.下列程序框圖對應(yīng)的函數(shù)是( 。
A.f(x)=xB.f(x)=-xC.f(x)=|x|D.f(x)=-|x|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.在一次考試中,某班學(xué)生的及格率是70%,這里所說的70%是頻率(填概率或頻率)

查看答案和解析>>

同步練習(xí)冊答案