13.若a>b,則下列正確的是( 。
1.a(chǎn)2>b2    2.a(chǎn)c>bc    3.a(chǎn)c2>bc2  4.a(chǎn)-c>b-c.
A.4B.2,3C.1,4D.1,2,3,4

分析 對于1,2,3舉例排除即可,對4利用不等式的基本性質(zhì)即可判斷

解答 解:若a>b,當a=0時,b=-1時,a2>b2 不成立,
當c=0時,ac>bc    不成立,
當c=0時,ac2>bc2  不成立,
根據(jù)不等式基本性質(zhì)可得a-c>b-c成立,
故選:A.

點評 本題考查了不等式的基本性質(zhì),屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

3.已知復數(shù)z滿足2z+$\overline z$=6-4i(i是虛數(shù)單位),則復數(shù)z在復平面內(nèi)對應(yīng)的點位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.若A、B是銳角三角形△ABC的兩個內(nèi)角,如果點P的坐標為P(cosB-sinA,sinB-cosA),則點P在直角坐標平面內(nèi)位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限t

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.已知軸截面為正方形 EFGH 的圓柱的體積為2π,則從點E沿圓柱的側(cè)面到相對頂點 G的最短距離是$\sqrt{{π}^{2}+4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.設(shè)關(guān)于x的一元二次方程x2+2ax+b2=0,若a是從區(qū)間[0,4]上任取的一個數(shù),b是從區(qū)間[0,3]上任取的一個數(shù),求上述方程有實根的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.在矩形ABCD中,點E為CD的中點,$\overrightarrow{AB}$=a,$\overrightarrow{AD}$=$\overrightarrow b$,則$\overrightarrow{BE}$=( 。
A.$-\frac{1}{2}\overrightarrow a-\overrightarrow b$B.$\frac{1}{2}\overrightarrow a-\overrightarrow b$C.$-\frac{1}{2}\overrightarrow a+\overrightarrow b$D.$\frac{1}{2}\overrightarrow a+\overrightarrow b$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知函數(shù)f(x)=2exln$\sqrt{e}$-kx(e=2.17128…是自然對數(shù)的底數(shù))有兩個不同的零點,則實數(shù)k的取值范圍是( 。
A.(0,+∞)B.[1,+∞)C.(e,+∞)D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知r是實數(shù)集,M={x|f(x)=lg(1-$\frac{2}{x}$)},N={x|y=$\sqrt{x-1}$},則(∁RM)∪N=( 。
A.[0,+∞)B.[1,+∞)C.[2,+∞)D.(1,2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.△ABC中,D為BC邊的中點,tan∠BAD•tan∠C=1,則△ABC是等腰或直角三角形.

查看答案和解析>>

同步練習冊答案