14.若(1+x)5=a0+a1x+a2x2+…+a5x5,則a1+a2+…+a5=31.

分析 依題意,分別令x=0(可求得a0=1)與x=1,即可求得a1+a2+…+a5的值.

解答 解:∵(1+x)5=a0+a1x+a2x2+…+a5x5,
∴當(dāng)x=0時(shí),a0=1;
當(dāng)x=1時(shí),(1+1)5=a0+a1+a2+…+a5=32,
∴a1+a2+…+a5=32-1=31.
故答案為:31.

點(diǎn)評(píng) 本題考查二項(xiàng)式定理的應(yīng)用,突出考查賦值法的運(yùn)用,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若A、B是銳角三角形△ABC的兩個(gè)內(nèi)角,如果點(diǎn)P的坐標(biāo)為P(cosB-sinA,sinB-cosA),則點(diǎn)P在直角坐標(biāo)平面內(nèi)位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限t

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知函數(shù)f(x)=2exln$\sqrt{e}$-kx(e=2.17128…是自然對(duì)數(shù)的底數(shù))有兩個(gè)不同的零點(diǎn),則實(shí)數(shù)k的取值范圍是(  )
A.(0,+∞)B.[1,+∞)C.(e,+∞)D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知r是實(shí)數(shù)集,M={x|f(x)=lg(1-$\frac{2}{x}$)},N={x|y=$\sqrt{x-1}$},則(∁RM)∪N=( 。
A.[0,+∞)B.[1,+∞)C.[2,+∞)D.(1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.?dāng)?shù)列{an},定義{△an}為數(shù)列{an}的一階差分?jǐn)?shù)列,其中△an=an+1-an(n∈N*
(1)若an=n2-n,試判斷{△an}是否是等差數(shù)列,并說明理由;
(2)若a1=1,△an-an=2n,求數(shù)列{an}的通項(xiàng)公式;
(3)對(duì)(b)中的數(shù)列{an},是否存在等差數(shù)列{bn},使得b1C${\;}_{n}^{1}$+b2C${\;}_{n}^{2}$+…+bnC${\;}_{n}^{n}$=an,對(duì)一切n∈N*都成立,若存在,求出數(shù)列{bn}的通項(xiàng)公式,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)無窮等比數(shù)列{an}的首項(xiàng)為a1,公比為q,前n項(xiàng)和為Sn,則“a1+q=1”是“$\underset{lim}{n→∞}$Sn=1”成立(  )
A.充分非必要條件B.必要非充分條件
C.充要條件D.既非充分也非必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.(1)求不等式x2-4x+3≤0的解集;
(2)求函數(shù)y=x+$\frac{4}{x}$的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.△ABC中,D為BC邊的中點(diǎn),tan∠BAD•tan∠C=1,則△ABC是等腰或直角三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=ex-ax-a(其中a∈R,e是自然對(duì)數(shù)的底數(shù),e=2.71828…).
(Ⅰ)當(dāng)a=e時(shí),求函數(shù)f(x)的極值;
(Ⅱ)討論函數(shù)f(x)的單調(diào)性
(Ⅲ)若f(x)≥0恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案