【題目】某化工廠從今年一月起,若不改善生產(chǎn)環(huán)境,按生產(chǎn)現(xiàn)狀,每月收入為70萬元,同時(shí)將受到環(huán)保部門的處罰,第一個(gè)月罰3萬元,以后每月增加2萬元如果從今年一月起投資500萬元添加回收凈化設(shè)備(改造設(shè)備時(shí)間不計(jì)),一方面可以改善環(huán)境,另一方面也可以大大降低原料成本據(jù)測(cè)算,添加回收凈化設(shè)備并投產(chǎn)后的前5個(gè)月中的累計(jì)生產(chǎn)凈收入是生產(chǎn)時(shí)間個(gè)月的二次函數(shù)是常數(shù)),且前3個(gè)月的累計(jì)生產(chǎn)凈收入可達(dá)309萬,從第6個(gè)月開始,每個(gè)月的生產(chǎn)凈收入都與第5個(gè)月相同同時(shí),該廠不但不受處罰,而且還將得到環(huán)保部門的一次性獎(jiǎng)勵(lì)100萬元

(1)求前8個(gè)月的累計(jì)生產(chǎn)凈收入的值;

(2)問經(jīng)過多少個(gè)月,投資開始見效,即投資改造后的純收入多于不改造時(shí)的純收入

【答案】(1);(2)經(jīng)過9個(gè)月投資開始見效。

【解析】試題分析: (1)根據(jù)g(3)得到k,再計(jì)算g(5)和g(5)﹣g(4),而g(8)=g(5)+3[g(5)﹣g(4)],從而得到結(jié)果;

(2)求出投資前后前n個(gè)月的總收入,列不等式解出n的范圍即可.

試題解析

(1)據(jù)題意,解得

第5個(gè)月的凈收入為 萬元,

所以, 萬元

2

要想投資開始見效,必須且只需

,

當(dāng)時(shí),

不成立;

當(dāng)時(shí), ,

驗(yàn)算得, 時(shí),

所以,經(jīng)過9個(gè)月投資開始見效。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱柱中, 底面 , ,且, .點(diǎn)在棱上,平面與棱相交于點(diǎn)

)求證: 平面

)求證: 平面

)求三棱錐的體積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在極坐標(biāo)系中,曲線的方程為,以極點(diǎn)為原點(diǎn),極軸為軸的正半軸,建立平面直角坐標(biāo)系,曲線的參數(shù)方程為,( 為參數(shù))

(1)求曲線的參數(shù)方程和曲線的普通方程;

(2)求曲線上的點(diǎn)到曲線的距離的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的首項(xiàng) ,

(1)求證:數(shù)列為等比數(shù)列;

(2)記,若Sn<100,求最大正整數(shù)n;

(3)是否存在互不相等的正整數(shù)m,sn,使m,s,n成等差數(shù)列,且am-1,as-1,an-1成等比數(shù)列?如果存在,請(qǐng)給以證明;如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)確定函數(shù)在定義域上的單調(diào)性,并寫出詳細(xì)過程;

(2)若上恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列為遞增的等比數(shù)列,

數(shù)列滿足

(Ⅰ)求數(shù)列的通項(xiàng)公式;(Ⅱ)求證: 是等差數(shù)列;

(Ⅲ)設(shè)數(shù)列滿足,且數(shù)列的前項(xiàng)和,并求使得對(duì)任意都成立的正整數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓錐曲線 為參數(shù))和定點(diǎn), 是此圓錐曲線的左、右焦點(diǎn).

(1)以原點(diǎn)為極點(diǎn),以軸的正半軸為極軸建立極坐標(biāo)系,求直線的極坐標(biāo)方程;

(2)經(jīng)過且與直線垂直的直線交此圓錐曲線, 兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】劉徽(約公元 225 —295 年)是魏晉時(shí)期偉大的數(shù)學(xué)家,中國(guó)古典數(shù)學(xué)理論的奠基人之一,他的杰作《九章算術(shù)注》和《海島算經(jīng)》是中國(guó)寶貴的古代數(shù)學(xué)遺產(chǎn). 《九章算術(shù)·商功》中有這樣一段話:斜解立方,得兩壍堵. 斜解壍堵,其一為陽(yáng)馬,一為鱉臑.” 劉徽注:此術(shù)臑者,背節(jié)也,或曰半陽(yáng)馬,其形有似鱉肘,故以名云.” 其實(shí)這里所謂的鱉臑(biē nào,就是在對(duì)長(zhǎng)方體進(jìn)行分割時(shí)所產(chǎn)生的四個(gè)面都為直角三角形的三棱錐. 如圖,在三棱錐中, 垂直于平面, 垂直于,且 ,則三棱錐的外接球的球面面積為__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在極坐標(biāo)系中,點(diǎn)M的坐標(biāo)為,曲線C的方程為;以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,斜率為的直線l經(jīng)過點(diǎn)M

(I)求直線l和曲線C的直角坐標(biāo)方程:

(II)P為曲線C上任意一點(diǎn),直線l和曲線C相交于A,B兩點(diǎn),求△PAB面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案