【題目】已知函數(shù).

(1)確定函數(shù)在定義域上的單調性,并寫出詳細過程;

(2)若上恒成立,求實數(shù)的取值范圍.

【答案】(1)答案見解析;(2) .

【解析】試題分析:(1先求導數(shù),再求導函數(shù)零點,列表分析導函數(shù)符號變化規(guī)律,進而確定單調性2調整不等式為上恒成立.再利用導數(shù)研究函數(shù)單調性:當時,函數(shù)單調遞增,最大值趨于正無窮 ,不符題意;當時,函數(shù)先增再減,最大值為,滿足題意;當時,最大值大于,不符題意

試題解析:(1)函數(shù)的定義域為,

,則有,

,解得,

所以在上, , 單調遞增,在上, 單調遞減.

,所以在定義域上恒成立.

在定義域上恒成立,

所以上單調遞減,在上單調遞減.

(2)由上恒成立得: 上恒成立.

整理得: 上恒成立.

,易知時, 上恒成立不可能, ,

,

時, ,又上單調遞減,所以上恒成立,則上單調遞減,又,所以上恒成立.

時, , ,上單調遞減,

所以存在,使得,

所以在,在,

所以上單調遞增,在上單調遞減,

,所以上恒成立,

所以上恒成立不可能.

綜上所述, .

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

I)求曲線在點處的切線方程.

II)求證:當時,

III)設實數(shù)使得恒成立,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】唐三彩,中國古代陶瓷燒制工藝的珍品,它吸取了中國國畫、雕塑等工藝美術的特點,在中國文化中占有重要的歷史地位,在陶瓷史上留下了濃墨重彩的一筆.唐三彩的生產至今已有1300多年的歷史,制作工藝十分復雜,它的制作過程必須先后經過兩次燒制,當?shù)谝淮螣坪细窈蠓娇蛇M入第二次燒制,兩次燒制過程相互獨立。某陶瓷廠準備仿制甲、乙、丙三件不同的唐三彩工藝品,根據(jù)該廠全面治污后的技術水平,經過第一次燒制后,甲、乙、丙三件工藝品合格的概率依次為, , ,經過第二次燒制后,甲、乙、丙三件工藝品合格的概率依次為, , .

(1)求第一次燒制后甲、乙、丙三件中恰有一件工藝品合格的概率;

(2)經過前后兩次燒制后,甲、乙、丙三件工藝品成為合格工藝品的件數(shù)為,求隨機變量的數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】本題滿分14分如圖,已知橢圓,其左右焦點為,過點的直線交橢圓兩點,線段的中點為,的中垂線與軸和軸分別交于兩點,且、、構成等差數(shù)列.

1求橢圓的方程;

2的面積為,為原點的面積為.試問:是否存在直線,使得?說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知矩陣將直線lxy-1=0變換成直線l′.

(1)求直線l′的方程;

(2)判斷矩陣A是否可逆?若可逆,求出矩陣A的逆矩陣A-1;若不可逆,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某化工廠從今年一月起,若不改善生產環(huán)境,按生產現(xiàn)狀,每月收入為70萬元,同時將受到環(huán)保部門的處罰,第一個月罰3萬元,以后每月增加2萬元如果從今年一月起投資500萬元添加回收凈化設備(改造設備時間不計),一方面可以改善環(huán)境,另一方面也可以大大降低原料成本據(jù)測算,添加回收凈化設備并投產后的前5個月中的累計生產凈收入是生產時間個月的二次函數(shù)是常數(shù)),且前3個月的累計生產凈收入可達309萬,從第6個月開始,每個月的生產凈收入都與第5個月相同同時,該廠不但不受處罰,而且還將得到環(huán)保部門的一次性獎勵100萬元

(1)求前8個月的累計生產凈收入的值;

(2)問經過多少個月,投資開始見效,即投資改造后的純收入多于不改造時的純收入

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓錐曲線 為參數(shù))和定點, 是此圓錐曲線的左、右焦點.

(1)以原點為極點,以軸的正半軸為極軸建立極坐標系,求直線的極坐標方程;

(2)經過且與直線垂直的直線交此圓錐曲線, 兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一盒中裝有除顏色外其余均相同的12個小球,從中隨機取出1個球,取出紅球的概率為,取出黑球的概率為,取出白球的概率為,取出綠球的概率為.求:

(1)取出的1個球是紅球或黑球的概率;

(2)取出的1個球是紅球或黑球或白球的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖是函數(shù)在區(qū)間上的圖象,為了得到這個函數(shù)的圖象,只需將y=sinx的圖象

A. 向左平移個長度單位,再把所得各點的橫坐標變?yōu)樵瓉淼?/span>,縱坐標不變

B. 向左平移至個長度單位,再把所得各點的橫坐標變?yōu)樵瓉淼?倍,縱坐標不變

C. 向左平移個長度單位,再把所得各點的橫坐標變?yōu)樵瓉淼?/span>,縱坐標不變

D. 向左平移個長度單位,再把所得各點的橫坐標變?yōu)樵瓉淼?倍,縱坐標不變

查看答案和解析>>

同步練習冊答案