【題目】如圖,已知平面平面,,.求:
(1)與所成角;
(2)與平面所成角;
(3)二面角大小.
【答案】(1);(2);(3)
【解析】
(1)作于點,連接,由題意結(jié)合面面垂直的性質(zhì)、平面幾何知識可得、、兩兩垂直,建立空間直角坐標系,求出各點坐標后,利用即可得解;
(2)求出的方向向量和平面的一個法向量為,利用求得線面角的正弦值后即可得解;
(3)求得平面的一個法向量為,利用即可得解.
(1)作于點,連接,
因為平面平面,所以平面,
又,,
所以,所以,
所以、、兩兩垂直,
如圖建立直角坐標系,
設(shè),則,,
則,,,,,
所以,,
所以,
所以與所成角為;
(2)由(1)知,平面的一個法向量為,
設(shè)與平面所成角為,
則,
所以即與平面所成角為;
(3)設(shè)平面的一個法向量為,
由,可得
,令,則,
所以,
又為鈍二面角,
∴二面角的大小為.
科目:高中數(shù)學 來源: 題型:
【題目】已知甲盒內(nèi)有大小相同的1個紅球和3個黑球,乙盒內(nèi)有大小相同的2個紅球和4個黑球,現(xiàn)從甲、乙兩個盒內(nèi)各任取2個球.
(1)求取出的4個球均為黑球的概率.
(2)求取出的4個球中恰有1個紅球的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=lnx﹣tx+t.
(1)討論f(x)的單調(diào)性;
(2)當t=2時,方程f(x)=m﹣ax恰有兩個不相等的實數(shù)根x1,x2,證明:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在某海岸P的附近有三個島嶼Q,R,S,計劃建立三座獨立大橋,將這四個地方連起來,每座橋只連接兩個地方,且不出現(xiàn)立體交叉形式,則不同的連接方式有( ).
A.24種B.20種C.16種D.12種
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若有平面與,,,,,則下列命題中真命題的序號有________.(1)過點且垂直于的直線平行于;(2)過點且垂直于的平面垂直于;(3)過點且垂直于的直線在內(nèi);(4)過點且垂直于的直線在內(nèi).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在30瓶飲料中,有3瓶已過了保質(zhì)期.從這30瓶飲料中任取2瓶,則至少取到一瓶已過保質(zhì)期的概率為 _________ .(結(jié)果用最簡分數(shù)表示)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(1)已知數(shù)列,其中,且數(shù)列為等比數(shù)列,求常數(shù)p;
(2)設(shè)、是公比不相等的兩個等比數(shù)列,,證明:數(shù)列不是等比數(shù)列.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知曲線的參數(shù)方程為為參數(shù)),以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.曲線的極坐標方程為,曲線與曲線的交線為直線.
(1)求直線和曲線的直角坐標方程;
(2)直線與軸交于點,與曲線相交于,兩點,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形中,,,現(xiàn)沿對角線將折起,使點A到達點P,點M,N分別在直線,上,且A,B,M,N四點共面.
(1)求證:;
(2)若平面平面,二面角平面角大小為,求直線與平面所成角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com