【題目】1)已知數(shù)列,其中,且數(shù)列為等比數(shù)列,求常數(shù)p;

2)設(shè)、是公比不相等的兩個等比數(shù)列,,證明:數(shù)列不是等比數(shù)列.

【答案】1p=2p=3;(2)證明見解析.

【解析】

1)第一問中,利用給定的等比數(shù)列,結(jié)合定義得到p的值;(2)根據(jù)設(shè)是公比不相等的兩個等比數(shù)列,,那么可驗證前幾項是否是等比數(shù)列來判定結(jié)論.

1)因為{cn1pcn}是等比數(shù)列,

故有:(cn1pcn2=(cn2pcn1)(cnpcn1),將cn2n3n代入上式,得:

2n13n1p2n3n)]2=[2n23n2p2n13n1)]·2n3np2n13n1)],

即[(2p2n+(3p3n2

=[(2p2n1+(3p3n1][(2p2n1+(3p3n1],

整理得2p)(3p·2n·3n0,解得p=2p=3.

2)證明:設(shè){an}、{bn}的公比分別為p、q,p≠q,cn=an+bn.

為證{cn}不是等比數(shù)列只需證c22≠c1·c3.

事實上,c22=(a1pb1q2a12p2b12q22a1b1pq,

c1·c3=(a1b1)(a1p2b1q2)=a12p2b12q2a1b1p2q2),

由于p≠q,p2q22pq,又a1、b1不為零,

因此c22≠c1·c3,

故{cn}不是等比數(shù)列.

本試題主要是考查了等比數(shù)列的概念的運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某城市現(xiàn)有人口總數(shù)為萬人,如果年自然增長率為,試解答下列問題:

1)寫出該城市經(jīng)過年后的人口總數(shù)關(guān)于的函數(shù)關(guān)系式;

2)用程序流程圖表示計算年以后該城市人口總數(shù)的算法;

3)用程序流程圖表示如下算法:計算大約多少年以后該城市人口將達到萬人.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的圖像是由函數(shù)的圖像經(jīng)如下變換得到:先將圖像上所有點的縱坐標伸長到原來的2倍橫坐標不變,再將所得到的圖像向右平移個單位長度.

求函數(shù)的解析式,并求其圖像的對稱軸方程;

已知關(guān)于的方程內(nèi)有兩個不同的解

1求實數(shù)m的取值范圍;

2證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知平面平面,.求:

1所成角;

2與平面所成角;

3)二面角大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】

(注意:在試題卷上作答無效)

已知5只動物中有1只患有某種疾病,需要通過化驗血液來確定患病的動物.血液化驗結(jié)果呈陽性的即為患病動物,呈陰性即沒患病.下面是兩種化驗方案:

方案甲:逐個化驗,直到能確定患病動物為止;

方案乙:先任取3只,將它們的血液混在一起化驗.若結(jié)果呈陽性則表明患病動物為這3只中的1只,然后再逐個化驗,直到能確定患病動物為止;若結(jié)果呈陰性則在另外2只中任取1只化驗.

求依方案甲所需化驗次數(shù)不少于依方案乙所需化驗次數(shù)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義:如果數(shù)列的任意連續(xù)三項均能構(gòu)成一個三角形的三邊長,則稱三角形數(shù)列,對于三角形數(shù)列,如果函數(shù)使得仍為一個三角形數(shù)列,則稱是數(shù)列保三角形函數(shù),.

1)已知是首項為2,公差為1的等差數(shù)列,若是數(shù)列保三角形函數(shù),求的取值范圍;

2)已知數(shù)列的首項為2010,是數(shù)列的前項和,且滿足,證明三角形數(shù)列;

3)根據(jù)保三角形函數(shù)的定義,對函數(shù),和數(shù)列1,提出一個正確的命題,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】

按照某學(xué)者的理論,假設(shè)一個人生產(chǎn)某產(chǎn)品單件成本為元,如果他賣出該產(chǎn)品的單價為元,則他的滿意度為;如果他買進該產(chǎn)品的單價為元,則他的滿意度為.如果一個人對兩種交易(賣出或買進)的滿意度分別為,則他對這兩種交易的綜合滿意度為.

現(xiàn)假設(shè)甲生產(chǎn)A、B兩種產(chǎn)品的單件成本分別為12元和5元,乙生產(chǎn)A、B兩種產(chǎn)品的單件成本分別為3元和20元,設(shè)產(chǎn)品A、B的單價分別為元和元,甲買進A與賣出B的綜合滿意度為,乙賣出A與買進B的綜合滿意度為

(1)關(guān)于、的表達式;當時,求證:=;

(2)設(shè),當、分別為多少時,甲、乙兩人的綜合滿意度均最大?最大的綜合滿意度為多少?(3)(2)中最大的綜合滿意度為,試問能否適當選取的值,使得同時成立,但等號不同時成立?試說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四棱錐中,底面為菱形,平面, 上一點,為菱形對角線的交點.

)證明:平面平面

)若,四棱錐的體積是四棱錐的體積的,求二面角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】1是某高架橋箱梁的橫截面,它由上部路面和下部支撐箱兩部分組成.如圖2,路面寬度,下部支撐箱CDEF為等腰梯形(),且.為了保證承重能力與穩(wěn)定性,需下部支撐箱的面積為,高度為2m,若路面AB側(cè)邊CFDE底部EF的造價分別為4a千元/m,5a千元/m,6a千元/ma為正常數(shù)),

1)試用θ表示箱梁的總造價y(千元);

2)試確定cosθ的值,使總造價最低?并求最低總造價.

查看答案和解析>>

同步練習(xí)冊答案