【題目】某班同學利用國慶節(jié)假期進行社會實踐,在年齡段的人群中隨機抽取人進行了一次生活習慣是否符合低碳觀念的調查,生活習慣符合低碳觀念的稱為“低碳族”,否則稱為“非低碳族”,得到如下統(tǒng)計表和各年齡段人數的頻率分布直方圖:
組別 | 分組 | “低碳族”的人數 | 占本組的頻率 |
第1組 | 120 | 0.6 | |
第2組 | 195 | ||
第3組 | 100 | 0.5 | |
第4組 | 0.4 | ||
第5組 | 30 | 0.3 | |
第6組 | 15 | 0.3 |
(1)補全頻率分布直方圖,并求,,的值;
(2)從年齡段的“低碳族”中采用分層隨機抽樣的方法抽取6人,求從年齡段的“低碳族”中應抽取的人數.
科目:高中數學 來源: 題型:
【題目】某校100名學生期中考試語文成績的頻率分布直方圖如圖所示,其中成績分組區(qū)間是:,,,,.
分數段 | ||||
1∶1 | 2∶1 | 3∶4 | 4∶5 |
(1)求圖中的值;
(2)根據頻率分布直方圖,估計這100名學生語文成績的平均分;
(3)若這100名學生語文成績某些分數段的人數()與數學成績相應分數段的人數()之比如下表所示,求數學成績在之外的人數.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,其圖像相鄰的兩個對稱中心之間的距離為,且有一條對稱軸為直線,則下列判斷正確的是 ( )
A. 函數的最小正周期為
B. 函數的圖象關于直線對稱
C. 函數在區(qū)間上單調遞增
D. 函數的圖像關于點對稱
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,若在定義域內存在,使得成立,則稱為函數的局部對稱點.
(1)若,證明:函數必有局部對稱點;
(2)若函數在區(qū)間內有局部對稱點,求實數的取值范圍;
(3)若函數在上有局部對稱點,求實數的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,其圖象與軸相鄰的兩個交點的距離為.
(1)求函數的解析式;
(2)若將的圖象向左平移個長度單位得到函數的圖象恰好經過點,求當取得最小值時,在上的單調區(qū)間.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】光農業(yè)科學研究所對冬季晝夜溫差大小與反季節(jié)土豆發(fā)芽多少之間的關系進行分析研究,他們分別記錄了11月1日至11月5日的每天晝夜溫差與實驗室每天每100顆種子中的發(fā)芽數,得到如表資料:
日期 | 11月1日 | 11月2日 | 11月3日 | 11月4日 | 11月5日 |
溫差(℃) | 10 | 11 | 13 | 12 | 8 |
發(fā)芽數(顆) | 23 | 26 | 32 | 26 | 16 |
設農科所確定的研究方案是:先從這5組數據中選取2組,用剩下的3組數據求線性回歸方程,再對被選取的2組數據進行檢驗.
(1)求選取的2組數據恰好是不相鄰2天數據的概率;
(2)若選取的是11月1日與11月5日的兩組數據,請根據11月2日至11月4日的數據,求出關于的線性回歸方程;
(3)若由線性回歸方程得到的估計數據與所選出的檢驗數據的誤差均不超過1顆,則認為得到的線性回歸方程是可靠的,試問(2)中所得的線性回歸方程是否可靠?
(注: ,)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校高三年級有500名學生,為了了解數學學科的學習情況,現(xiàn)隨機抽出若干名學生在一次測試中的數學成績(滿分150分),制成如下頻率分布表:
分組 | 頻數 | 頻率 |
① | ② | |
0.050 | ||
0.200 | ||
12 | 0.300 | |
0.275 | ||
4 | ③ | |
0.050 | ||
合計 | ④ |
(1)①②③④處應分別填什么?
(2)根據頻率分布表完成頻率分布直方圖.
(3)試估計該校高三年級在這次測試中數學成績的平均分.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,已知以M為圓心的圓M: 及其上一點A(2,4)
(1)設圓N與x軸相切,與圓M外切,且圓心N在直線x=6上,求圓N的標準方程;
(2)設平行于OA的直線l與圓M相交于B、C兩點,且BC=OA,求直線l的方程;
(3)設點T(t,o)滿足:存在圓M上的兩點P和Q,使得,求實數t的取值范圍。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列命題中,正確的命題的是( )
A.已知隨機變量服從二項分布,若,,則;
B.將一組數據中的每個數據都加上同一個常數后,方差恒不變;
C.設隨機變量服從正態(tài)分布,若,則;
D.某人在10次射擊中,擊中目標的次數為,,則當時概率最大.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com