【題目】橢圓 的離心率為,過(guò)右焦點(diǎn)垂直于軸的直線與橢圓交于 兩點(diǎn)且,又過(guò)左焦點(diǎn)任作直線交橢圓于點(diǎn)

(Ⅰ)求橢圓的方程;

(Ⅱ)橢圓上兩點(diǎn), 關(guān)于直線對(duì)稱,求面積的最大值.

【答案】(Ⅰ);(Ⅱ).

【解析】試題分析:

(1)由題意求得 ,∴橢圓的方程為

(2)當(dāng)直線斜率存在且時(shí),聯(lián)立直線與橢圓的方程計(jì)算可得假設(shè) 不成立;

當(dāng)直線的斜率時(shí),面積函數(shù),結(jié)合橢圓方程和均值不等式的結(jié)論可得面積的最大值為.

試題解析:

(Ⅰ)由條件有,∴,又,且,

, ,∴橢圓的方程為

(Ⅱ)依題意直線不垂直軸,當(dāng)直線的斜率時(shí),可設(shè)直線的方程為),則直線的方程為

,即,①

設(shè)的中點(diǎn)為,則, ,

點(diǎn)在直線上,∴,故,②

此時(shí)與①矛盾,故時(shí)不成立.

當(dāng)直線的斜率時(shí), , ),

的面積,

,

,

面積的最大值為,當(dāng)且僅當(dāng)時(shí)取等號(hào).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知橢圓過(guò)點(diǎn), , 分別為橢圓的右、下頂點(diǎn),且

(1)求橢圓的方程;

(2)設(shè)點(diǎn)在橢圓內(nèi),滿足直線, 的斜率乘積為,且直線 分別交橢圓于點(diǎn),

(i) 若 關(guān)于軸對(duì)稱,求直線的斜率;

(ii) 求證: 的面積與的面積相等.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=﹣3x2+a(6﹣a)x+c.
(1)當(dāng)c=19時(shí),解關(guān)于a的不等式f(1)>0;
(2)若關(guān)于x的不等式f(x)>0的解集是(﹣1,3),求實(shí)數(shù)a,c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線的頂點(diǎn)為原點(diǎn),焦點(diǎn)為圓的圓心.經(jīng)過(guò)點(diǎn)的直線交拋物線兩點(diǎn),交圓兩點(diǎn), 在第一象限, 在第四象限.

(1)求拋物線的方程;

(2)是否存在直線,使的等差中項(xiàng)?若存在,求直線的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為響應(yīng)國(guó)家“精準(zhǔn)扶貧,產(chǎn)業(yè)扶貧”的戰(zhàn)略,某市面向全市征召《扶貧政策》義務(wù)宣傳志愿者,從年齡在的500名志愿者中隨機(jī)抽取100名,其年齡頻率分布直方圖如圖所示.

(Ⅰ)求圖中的值;

(Ⅱ)在抽出的100名志愿者中按年齡采用分層抽樣的方法抽取10名參加中心廣場(chǎng)的宣傳活動(dòng),再?gòu)倪@10名志愿者中選取3名擔(dān)任主要負(fù)責(zé)人.記這3名志愿者中“年齡低于35歲”的人數(shù)為,求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè){an}是等差數(shù)列,下列結(jié)論中正確的是(
A.若a1+a2>0,則a2+a3>0
B.若a1+a3<0,則a1+a2<0
C.若0<a1<a2 , 則a2
D.若a1<0,則(a2﹣a1)(a2﹣a3)>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)為自然對(duì)數(shù)的底數(shù))有兩個(gè)極值點(diǎn),則實(shí)數(shù)的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】有甲、乙兩個(gè)班進(jìn)行數(shù)學(xué)考試,按照大于等于120分為優(yōu)秀,120分以下為非優(yōu)秀統(tǒng)計(jì)成績(jī)后,得到如下列聯(lián)表:(單位:人).

已知在全部105人中隨機(jī)抽取1人成績(jī)是優(yōu)秀的概率為.

(1)請(qǐng)完成上面的列聯(lián)表,并根據(jù)表中數(shù)據(jù)判斷,是否有的把握認(rèn)為“成績(jī)與班級(jí)有關(guān)系”?

(2)若甲班優(yōu)秀學(xué)生中有男生6名,女生4名,現(xiàn)從中隨機(jī)選派3名學(xué)生參加全市數(shù)學(xué)競(jìng)賽,記參加競(jìng)賽的男生人數(shù)為,求的分布列與期望.

附:

0.15

0.10

0.050

0.010

2.072

2.706

3.841

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】等差數(shù)列{an}的前n項(xiàng)和記為Sn , 已知a10=30,a20=50.
(1)求通項(xiàng){an};
(2)令Sn=242,求n.

查看答案和解析>>

同步練習(xí)冊(cè)答案