精英家教網 > 高中數學 > 題目詳情

【題目】設{an}是等差數列,下列結論中正確的是(
A.若a1+a2>0,則a2+a3>0
B.若a1+a3<0,則a1+a2<0
C.若0<a1<a2 , 則a2
D.若a1<0,則(a2﹣a1)(a2﹣a3)>0

【答案】C
【解析】解:若a1+a2>0,則2a1+d>0,a2+a3=2a1+3d>2d,d>0時,結論成立,即A不正確; 若a1+a3<0,則a1+a2=2a1+d<0,a2+a3=2a1+3d<2d,d<0時,結論成立,即B不正確;
{an}是等差數列,0<a1<a2 , 2a2=a1+a3>2 ,∴a2 ,即C正確;
若a1<0,則(a2﹣a1)(a2﹣a3)=﹣d2≤0,即D不正確.
故選:C.
【考點精析】利用等差數列的性質對題目進行判斷即可得到答案,需要熟知在等差數列{an}中,從第2項起,每一項是它相鄰二項的等差中項;相隔等距離的項組成的數列是等差數列.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,長方體ABCD﹣A1B1C1D1中,AA1=AB=2,AD=1點E,F,G分別是DD1 , AB,CC1的中點,則異面直線A1E與GF所成的角是(
A.90°
B.60°
C.45°
D.30°

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某消費品專賣店的經營資料顯示如下:
①這種消費品的進價為每件14元;
②該店月銷售量Q(百件)與銷售價格P(元)滿足的函數關系式為Q= ,點(14,22),(20,10),(26,1)在函數的圖象上;
③每月需各種開支4400元.

(1)求月銷量Q(百件)與銷售價格P(元)的函數關系;
(2)當商品的價格為每件多少元時,月利潤最大?并求出最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中點.
(1)證明CD⊥AE;
(2)證明PD⊥平面ABE;
(3)求二面角A﹣PD﹣C的正切值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】橢圓 的離心率為,過右焦點垂直于軸的直線與橢圓交于 兩點且,又過左焦點任作直線交橢圓于點

(Ⅰ)求橢圓的方程;

(Ⅱ)橢圓上兩點, 關于直線對稱,求面積的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某三棱錐的三視圖如圖所示,則該三棱錐的表面積是(
A.2+
B.4+
C.2+2
D.5

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列函數中與函數y=x相等的函數是(
A.y=log22x
B.y=
C.y=2
D.y=( 2

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=(ex+1)(ax+2a﹣2),若存在x∈(0,+∞),使得不等式f(x)﹣2<0成立,則實數a的取值范圍是(
A.(0,1)
B.(0,
C.(﹣∞,1)
D.(﹣∞,

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知等差數列{an}滿足an+1>an , a1=1,且該數列的前三項分別加上1,1,3后順次成為等比數列{bn}的前三項.
(1)求數列{an},{bn}的通項公式;
(2)令cn=anbn , 求數列{cn}的前n項和Sn

查看答案和解析>>

同步練習冊答案