設(shè)函數(shù)f(x)=x3﹣x2﹣2x﹣.
(1)求函數(shù)f(x)的單調(diào)遞增、遞減區(qū)間;
(2)當(dāng)x∈[﹣1,1]時,f(x)<m恒成立,求實數(shù)m的取值范圍.
(1)f(x)的單調(diào)增區(qū)間為(﹣∞,﹣]和[1,+∞),單調(diào)減區(qū)間為[﹣,1]; (2)m>.
解析試題分析:(1)首先應(yīng)求導(dǎo)數(shù),利用導(dǎo)數(shù)的為正或為負,解對應(yīng)不等式可得函數(shù)的單調(diào)增(減)區(qū)間;
(2)由不等式恒成立問題可通過分離參數(shù)等價轉(zhuǎn)化成f(x)max<m,求函數(shù)f(x)的最大值即可.
試題解析:(1)f′(x)=3x2﹣x﹣2=0,得x=1,﹣.
在(﹣∞,﹣)和[1,+∞)上f′(x)>0,f(x)為增函數(shù);
在(﹣,1)上f′(x)<0,f(x)為減函數(shù).
所以所求f(x)的單調(diào)增區(qū)間為(﹣∞,﹣]和[1,+∞),單調(diào)減區(qū)間為[﹣,1].
(2)由(1)知,當(dāng)x∈[﹣1,﹣]時,f′(x)>0,[﹣,1]時,f′(x)<0
∴f(x)≤f(﹣)=.
∵當(dāng)x∈[﹣1,1]時,f(x)<m恒成立,
∴m>.
考點:1.利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性;2.不等式的恒成立問題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)若函數(shù)在區(qū)間上存在極值點,求實數(shù)a的取值范圍;
(2)如果當(dāng)時,不等式恒成立,求實數(shù)k的取值范圍;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某商場預(yù)計從2013年1月份起的前x個月,顧客對某商品的需求總量p(x)(單位:件)與x的關(guān)系近似的滿足,且)。該商品第x月的進貨單價q(x)(單位:元)與x的近似關(guān)系是
(1)寫出這種商品2013年第x月的需求量f(x)(單位:件)與x的函數(shù)關(guān)系式;
(2)該商品每件的售價為185元,若不計其他費用且每月都能滿足市場需求,試問該商場2013年第幾個月銷售該商品的月利潤最大,最大月利潤為多少元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)(k為常數(shù),e=2.71828…是自然對數(shù)的底數(shù)),曲線在點處的切線與x軸平行.
(1)求k的值及的單調(diào)區(qū)間;
(2)設(shè)其中為的導(dǎo)函數(shù),證明:對任意,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),().
(1)若x=3是的極值點,求在[1,a]上的最小值和最大值;
(2)若在時是增函數(shù),求實數(shù)a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com