已知冪函數(shù)()在是單調(diào)減函數(shù),且為偶函數(shù).
(1)求的解析式;
(2)討論的奇偶性,并說(shuō)明理由.
(1);(2)詳見(jiàn)解析.
解析試題分析:(Ⅰ)由冪函數(shù)()在是單調(diào)減函數(shù),且為偶函數(shù)可知,得,又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/36/8/1k1wn3.png" style="vertical-align:middle;" />所以;
(Ⅱ)由(Ⅰ)求出,對(duì)參數(shù)a進(jìn)行討論,再利用函數(shù)的奇偶性判斷方法進(jìn)行判斷.
試題解析:(1)由于冪函數(shù)在是單調(diào)減函數(shù),
所以 1分
求得因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/36/8/1k1wn3.png" style="vertical-align:middle;" />,所以 2分
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/97/6/1ba4k2.png" style="vertical-align:middle;" />是偶函數(shù),所以 3分
故: 4分
(2)
6分
8分
當(dāng),因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/77/1/thexn2.png" style="vertical-align:middle;" />,,
9分
. 10分.
考點(diǎn):1.冪函數(shù)的性質(zhì);2.函數(shù)的奇偶性.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知定義在R上的函數(shù)f(x)對(duì)任意實(shí)數(shù)x、y恒有f(x)+f(y)=f(x+y),且當(dāng)x>0時(shí),f(x)<0,又f(1)=-.
(1)求證:f(x)為奇函數(shù);
(2)求證:f(x)在R上是減函數(shù);
(3)求f(x)在[-3,6]上的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
某醫(yī)藥研究所開(kāi)發(fā)一種新藥,在試驗(yàn)藥效時(shí)發(fā)現(xiàn):如果成人按規(guī)定劑量服用,那么服藥后每毫升血液中的含藥量y(微克)與時(shí)間x(小時(shí))之間滿足y=其對(duì)應(yīng)曲線(如圖所示)過(guò)點(diǎn).
(1)試求藥量峰值(y的最大值)與達(dá)峰時(shí)間(y取最大值時(shí)對(duì)應(yīng)的x值);
(2)如果每毫升血液中含藥量不少于1微克時(shí)治療疾病有效,那么成人按規(guī)定劑量服用該藥后一次能維持多長(zhǎng)的有效時(shí)間(精確到0.01小時(shí))?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)(a為常數(shù))在x=1處的切線的斜率為1.
(1)求實(shí)數(shù)a的值,并求函數(shù)的單調(diào)區(qū)間,
(2)若不等式≥k在區(qū)間上恒成立,其中e為自然對(duì)數(shù)的底數(shù),求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù)的定義域是,對(duì)于任意的,有,且當(dāng)時(shí),.
(1)求的值;
(2)判斷函數(shù)的奇偶性;
(3)用函數(shù)單調(diào)性的定義證明函數(shù)為增函數(shù);
(4)若恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
定義在上的函數(shù)同時(shí)滿足以下條件:
①在(0,1)上是減函數(shù),在(1,+∞)上是增函數(shù);
②是偶函數(shù);
③在x=0處的切線與直線y=x+2垂直.
(1)求函數(shù)=的解析式;
(2)設(shè)g(x)=,若存在實(shí)數(shù)x∈[1,e],使<,求實(shí)數(shù)m的取值范圍..
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
若非零函數(shù)對(duì)任意實(shí)數(shù)均有,且當(dāng)時(shí),.
(1)求證:
(2)求證:為減函數(shù);
(3)當(dāng)時(shí),解不等式
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù).
(Ⅰ)若,試判斷在定義域內(nèi)的單調(diào)性;
(Ⅱ) 當(dāng)時(shí),若在上有個(gè)零點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)滿足,當(dāng)時(shí),,當(dāng)時(shí), 的最大值為-4.
(I)求實(shí)數(shù)的值;
(II)設(shè),函數(shù),.若對(duì)任意的,總存在,使,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com