精英家教網 > 高中數學 > 題目詳情

【題目】已知函數f(x)= 的值域是[0,+∞),則實數m的取值范圍是

【答案】[8,+∞)
【解析】解:由題意可知函數f(x)的復合函數,要使f(x)的值域為[0,+∞),只需要mx2+mx+2的值域包括0即可.

令g(x)=mx2+mx+2,要使值域包括0,即最小值小于等于0.

那么: ,解得:m≥8.

∴實數m的取值范圍是[8,+∞).
所以答案是:[8,+∞)

【考點精析】根據題目的已知條件,利用函數的值域的相關知識可以得到問題的答案,需要掌握求函數值域的方法和求函數最值的常用方法基本上是相同的.事實上,如果在函數的值域中存在一個最小(大)數,這個數就是函數的最。ù螅┲担虼饲蠛瘮档淖钪蹬c值域,其實質是相同的.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知f(x)為定義在R上的偶函數,當x≤﹣1時,f(x)=x+b,且f(x)的圖象經過點(﹣2,0),在y=f(x)的圖象中有一部分是頂點為(0,2),過點(﹣1,1)的一段拋物線.
(1)試求出f(x)的表達式;
(2)求出f(x)的值域.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列{an}前n項和為Sn , 首項為a1 , 且 ,an , Sn成等差數列.
(1)求數列{an}的通項公式;
(2)數列{bn}滿足bn=(log2a3n+1)×(log2a3n+4),求證: + + +…+

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知實數a>0,集合 ,集合B={x||2x﹣1|>5}.
(1)求集合A、B;
(2)若A∩B≠,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知定義在R的函數f(x)滿足以下條件:
①對任意實數x,y恒有f(x+y)=f(x)f(y)+f(x)+f(y);
②當x>0時,f(x)>0;
③f(1)=1.
(1)求f(2),f(0)的值;
(2)若f(2x)﹣a≥af(x)﹣5對任意x恒成立,求a的取值范圍;
(3)求不等式 的解集.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數g(x)=ax2﹣2ax+1+b(a>0)在區(qū)間[0,3]上有最大值5和最小值1.設f(x)=
(1)求a,b的值;
(2)若不等式f(x)﹣k≥0在x∈[1,4]上恒成立,求實數k的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設D是函數y=f(x)定義域內的一個子區(qū)間,若存在x0∈D,使f(x0)=﹣x0 , 則稱x0是f(x)的一個“開心點”,也稱f(x)在區(qū)間D上存在開心點.若函數f(x)=ax2﹣2x﹣2a﹣ 在區(qū)間[﹣3,﹣ ]上存在開心點,則實數a的取值范圍是(
A.(﹣∞,0)
B.[﹣ ,0]
C.[﹣ ,0]
D.[﹣ ,﹣ ]

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,PD⊥平面ABCD,DC⊥AD,BC∥AD,PD:DC:BC=1:1:

(1)若AD=DC,求異面直線PA,BC所成的角;
(2)求PB與平面PDC所成角大小;
(3)求二面角D﹣PB﹣C的正切值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】若實數x、y、m滿足|x﹣m|>|y﹣m|,則稱x比y遠離m.
(1)若x2﹣1比3遠離0,求x的取值范圍;
(2)對任意兩個不相等的正數a、b,證明:a3+b3比a2b+ab2遠離2ab

查看答案和解析>>

同步練習冊答案