【題目】已知正四棱柱ABCD﹣A1B1C1D1 , AB=a,AA1=2a,E,F(xiàn)分別是棱AD,CD的中點(diǎn).
(1)求異面直線BC1與EF所成角的大;
(2)求四面體CA1EF的體積.
【答案】
(1)解:連接A1C1,
∵E,F(xiàn)分別是棱AD,CD的中點(diǎn),∴EF∥AC,則EF∥A1C1,
∴∠A1C1B為異面直線BC1與EF所成角.
在△A1C1B中,由AB=a,AA1=2a,得 , ,
∴cos∠A1C1B= ,
∴異面直線BC1與EF所成角的大小為
(2)解: .
【解析】(1)連接A1C1 , 由E,F(xiàn)分別是棱AD,CD的中點(diǎn),可得EF∥AC,進(jìn)一步得到EF∥A1C1 , 可知∠A1C1B為異面直線BC1與EF所成角.然后求解直角三角形得答案;(2)直接利用等體積法把四面體CA1EF的體積轉(zhuǎn)化為三棱錐A1﹣EFC的體積求解.
【考點(diǎn)精析】通過(guò)靈活運(yùn)用異面直線及其所成的角,掌握異面直線所成角的求法:1、平移法:在異面直線中的一條直線中選擇一特殊點(diǎn),作另一條的平行線;2、補(bǔ)形法:把空間圖形補(bǔ)成熟悉的或完整的幾何體,如正方體、平行六面體、長(zhǎng)方體等,其目的在于容易發(fā)現(xiàn)兩條異面直線間的關(guān)系即可以解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知 = ( ).
(Ⅰ)當(dāng) =2時(shí),求函數(shù) 在(1, )處的切線方程;
(Ⅱ)若 ≥1時(shí), ≥0,求實(shí)數(shù) 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)a,b∈R,函數(shù) ,g(x)=ex(e為自然對(duì)數(shù)的底數(shù)),且函數(shù)f(x)的圖象與函數(shù)g(x)的圖象在x=0處有公共的切線.
(Ⅰ)求b的值;
(Ⅱ)討論函數(shù)f(x)的單調(diào)性;
(Ⅲ)若g(x)>f(x)在區(qū)間(﹣∞,0)內(nèi)恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知雙曲線C: =1經(jīng)過(guò)點(diǎn)(2,3),兩條漸近線的夾角為60°,直線l交雙曲線于A,B兩點(diǎn).
(1)求雙曲線C的方程;
(2)若l過(guò)原點(diǎn),P為雙曲線上異于A,B的一點(diǎn),且直線PA,PB的斜率kPA , kPB均存在,求證:kPAkPB為定值;
(3)若l過(guò)雙曲線的右焦點(diǎn)F1 , 是否存在x軸上的點(diǎn)M(m,0),使得直線l繞點(diǎn)F1無(wú)論怎樣轉(zhuǎn)動(dòng),都有 =0成立?若存在,求出M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)= sin2x+cos2( ﹣x)﹣ (x∈R).
(1)求函數(shù)f(x)在區(qū)間[0, ]上的最大值;
(2)在△ABC中,若A<B,且f(A)=f(B)= ,求 的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)= (a>0,且a≠1)在R上單調(diào)遞減,且關(guān)于x的方程|f(x)|=2﹣x恰好有兩個(gè)不相等的實(shí)數(shù)解,則a的取值范圍是( )
A.(0, ]
B.[ , ]
C.[ , ]∪{ }
D.[ , )∪{ }
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)列{bn}的前n項(xiàng)和為Sn , 且對(duì)任意正整數(shù)n,都有 ;
(1)試證明數(shù)列{bn}是等差數(shù)列,并求其通項(xiàng)公式;
(2)如果等比數(shù)列{an}共有2017項(xiàng),其首項(xiàng)與公比均為2,在數(shù)列{an}的每相鄰兩項(xiàng)ai與ai+1之間插入i個(gè)(﹣1)ibi(i∈N*)后,得到一個(gè)新數(shù)列{cn},求數(shù)列{cn}中所有項(xiàng)的和;
(3)如果存在n∈N* , 使不等式 成立,若存在,求實(shí)數(shù)λ的范圍,若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知復(fù)數(shù)z=lg(m2﹣2m﹣2)+(m2+3m+2)i,根據(jù)以下條件分別求實(shí)數(shù)m的值或范圍.
(1)z是純虛數(shù);
(2)z對(duì)應(yīng)的點(diǎn)在復(fù)平面的第二象限.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知隨機(jī)變量X﹣N(1,1),其正態(tài)分布密度曲線如圖所示,若向正方形OABC中隨機(jī)投擲10000個(gè)點(diǎn),則落入陰影部分的點(diǎn)個(gè)數(shù)的估計(jì)值為( ) 附:若隨機(jī)變量ξ﹣N(μ,σ2),則P(μ﹣σ<ξ≤μ+σ)=0.6826,P(μ﹣2σ<ξ≤μ+2σ)=0.9544.
A.6038
B.6587
C.7028
D.7539
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com