【題目】設(shè)a,b∈R,函數(shù) ,g(x)=ex(e為自然對(duì)數(shù)的底數(shù)),且函數(shù)f(x)的圖象與函數(shù)g(x)的圖象在x=0處有公共的切線.
(Ⅰ)求b的值;
(Ⅱ)討論函數(shù)f(x)的單調(diào)性;
(Ⅲ)若g(x)>f(x)在區(qū)間(﹣∞,0)內(nèi)恒成立,求a的取值范圍.
【答案】(Ⅰ)f'(x)=x2+2ax+b,g'(x)=ex ,
由f'(0)=b=g'(0)=1,得b=1.
(Ⅱ)f'(x)=x2+2ax+1=(x+a)2+1﹣a2 ,
當(dāng)a2≤1時(shí),即﹣1≤a≤1時(shí),f'(x)≥0,從而函數(shù)f(x)在定義域內(nèi)單調(diào)遞增,
當(dāng)a2>1時(shí), ,此時(shí)
若 ,f'(x)>0,則函數(shù)f(x)單調(diào)遞增;
若 ,f'(x)<0,則函數(shù)f(x)單調(diào)遞減;
若 時(shí),f'(x)>0,則函數(shù)f(x)單調(diào)遞增.
(Ⅲ)令h(x)=g'(x)﹣f'(x)=ex﹣x2﹣2ax﹣1,則h(0)=e0﹣1=0.h'(x)=ex﹣2x﹣2a,令u(x)=h'(x)=ex﹣2x﹣2a,則u'(x)=ex﹣2.
當(dāng)x≤0時(shí),u'(x)<0,從而h'(x)單調(diào)遞減,
令u(0)=h'(0)=1﹣2a=0,得 .
先考慮 的情況,此時(shí),h'(0)=u(0)≥0;
又當(dāng)x∈(﹣∞,0)時(shí),h'(x)單調(diào)遞減,所以h'(x)>0;
故當(dāng)x∈(﹣∞,0)時(shí),h(x)單調(diào)遞增;
又因?yàn)閔(0)=0,故當(dāng)x<0時(shí),h(x)<0,
從而函數(shù)g(x)﹣f(x)在區(qū)間(﹣∞,0)內(nèi)單調(diào)遞減;
又因?yàn)間(0)﹣f(0)=0,所以g(x)>f(x)在區(qū)間(﹣∞,0)恒成立.
接下來考慮 的情況,此時(shí),h'(0)<0,
令x=﹣a,則h'(﹣a)=e﹣a>0.
由零點(diǎn)存在定理,存在x0∈(﹣a,0)使得h'(x0)=0,
當(dāng)x∈(x0 , 0)時(shí),由h'(x)單調(diào)遞減可知h'(x)<0,所以h(x)單調(diào)遞減,
又因?yàn)閔(0)=0,故當(dāng)x∈(x0 , 0)時(shí)h(x)>0.
從而函數(shù)g(x)﹣f(x)在區(qū)間(x0 , 0)單調(diào)遞增;
又因?yàn)間(0)﹣f(0)=0,所以當(dāng)x∈(x0 , 0),g(x)<f(x).
綜上所述,若g(x)>f(x)在區(qū)間(﹣∞,0)恒成立,則a的取值范圍是
【解析】(Ⅰ)求出兩個(gè)函數(shù)的導(dǎo)數(shù),利用函數(shù)f(x)的圖象與函數(shù)g(x)的圖象在x=0處有公共的切線.列出方程即可求解b.
(Ⅱ)求出導(dǎo)函數(shù)f'(x)=,通過﹣1≤a≤1時(shí),當(dāng)a2>1時(shí),分別判斷導(dǎo)函數(shù)的符號(hào),推出函數(shù)的單調(diào)區(qū)間.
(Ⅲ)令h(x)=g'(x)﹣f'(x)=ex﹣x2﹣2ax﹣1,可得h(0)0.求出h'(x)=ex﹣2x﹣2a,令u(x)=h'(x)=ex﹣2x﹣2a,求出導(dǎo)數(shù)u'(x)=ex﹣2.當(dāng)x≤0時(shí),u'(x)<0,從而h'(x)單調(diào)遞減,求出 .考慮 的情況, 的情況,分別通過函數(shù)的單調(diào)性以及函數(shù)的最值,推出a的范圍即可.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在公差不為零的等差數(shù)列{an}中,已知a2=3,且a1、a3、a7成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn , 記bn= ,求數(shù)列{bn}的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線 ,θ∈[0,2π)上一點(diǎn)P(x,y)到定點(diǎn)M(a,0),(a>0)的最小距離為 ,則a= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線l的參數(shù)方程為 (其中t為參數(shù)),現(xiàn)以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線C的極坐標(biāo)方程為ρ=4cosθ.
(Ⅰ)寫出直線l和曲線C的普通方程;
(Ⅱ)已知點(diǎn)P為曲線C上的動(dòng)點(diǎn),求P到直線l的距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且滿足acosB=bcosA.
(1)判斷△ABC的形狀;
(2)求sin(2A+ )﹣2cos2B的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】解不等式( )x﹣x+ >0時(shí),可構(gòu)造函數(shù)f(x)=( )x﹣x,由f(x)在x∈R是減函數(shù),及f(x)>f(1),可得x<1.用類似的方法可求得不等式arcsinx2+arcsinx+x6+x3>0的解集為( )
A.(0,1]
B.(﹣1,1)
C.(﹣1,1]
D.(﹣1,0)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正四棱柱ABCD﹣A1B1C1D1 , AB=a,AA1=2a,E,F(xiàn)分別是棱AD,CD的中點(diǎn).
(1)求異面直線BC1與EF所成角的大;
(2)求四面體CA1EF的體積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com