已知橢圓
的左、右焦點分別為
、
,
是橢圓上一點,
是
的中點,若
,則
的長等于( )
本題考查圓錐曲線定義和平面幾何知識。由
得
=2,所以
=8-2=6。
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
設橢圓C:
(a〉b>0)的左焦點為
,橢圓過點P(
)
(1)求橢圓C的方程;
(2)已知點D(l,0),直線l:
與橢圓C交于A、B兩點,以DA和DB為鄰邊的四邊形是菱形,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
橢圓
的焦點在
軸上,長軸長是短軸長的兩倍,則
的值為 ( )
A
B
C 2 D 4
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
橢圓
的左右焦點分別為
,過焦點
的傾斜角為
直線交橢圓于A,B兩點,弦長
,若三角形ABF2的內切圓的面積為
,則橢圓的離心率為 ( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
在橢圓
內有一點
,
為橢圓的右焦點,在橢圓上有一點
,
使
的值最小,則此最小值為 ( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
設F(c,0)為橢圓
的右焦點,橢圓上的點與點F的距
離的最大值為M,最小值為m,則橢圓上與F點的距離是
的點是
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)
已知橢圓
:
的離心率為
,以原點為圓心,橢圓的短半軸長為半徑的圓與直線
相切.
⑴求橢圓C的方程;
⑵設
,
是橢圓
上的點,連結
交橢圓
于另一點
,求直線
的斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(12分)已知
、
分別是橢圓
的左、右焦點,點B是其上頂點,橢圓的右準線與
軸交于點N,且
。
(1)求橢圓方程;
(2)直線
:
與橢圓交于不同的兩點M、Q,若△BMQ是以MQ為底邊的等腰三角形,求
的值。
查看答案和解析>>