【題目】已知函數f(x)=2x3+3x2﹣12x+5. (Ⅰ)求曲線y=f(x)在點(0,5)處的切線方程;
(Ⅱ)求函數f(x)的極值.
【答案】解:f′(x)=6x2+6x﹣12 (Ⅰ)依題意可知:k=f′(x)|x=0=﹣12
∴切線方程為:y﹣5=﹣12x
即12x+y﹣5=0
(Ⅱ)令f′(x)=0,得:x1=﹣2,x2=1
x | (﹣∞,﹣2) | ﹣2 | (﹣2,1) | 1 | (1,+∞) |
f'(x) | + | 0 | ﹣ | + | |
f(x) | ↑ | 極大值 | ↓ | 極小值﹣2 | ↑ |
∴f(x)的極大值為f(﹣2)=25,極小值為f(1)=﹣2
【解析】(Ⅰ)求出函數的導數在x=0的導數值,就是切線的斜率,利用點斜式求解曲線y=f(x)在點(0,5)處的切線方程;(Ⅱ)利用函數的導數為0,求出極值點,判斷導函數的符號,即可求函數f(x)的極值.
【考點精析】本題主要考查了函數的極值與導數的相關知識點,需要掌握求函數的極值的方法是:(1)如果在附近的左側,右側,那么是極大值(2)如果在附近的左側,右側,那么是極小值才能正確解答此題.
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,已知PA⊥平面ABCD,且四邊形ABCD為直角梯形,∠ABC=∠BAD= ,PA=AD=2,AB=BC=1.
(1)求平面PAB與平面PCD所成二面角的余弦值;
(2)點Q是線段BP上的動點,當直線CQ與DP所成的角最小時,求線段BQ的長.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=x2﹣4x+1.
( I)當x∈[0,3]時,畫出函數y=f(x)的圖象并寫出值域;
(II)若函數y=f(x)在區(qū)間[a,a+1]上單調,求a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】
(1)已知點M(1,-3),N(1,2),P(5,y),且∠NMP=90°,則log8(7+y)=.
(2)若把本題中“∠NMP=90°”改為“l(fā)og8(7+y)= ”,其他條件不變,則∠NMP=.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】圍建一個面積為360m2的矩形場地,要求矩形場地的一面利用舊墻(利用舊墻需維修),其它三面圍墻要新建,在舊墻的對面的新墻上要留一個寬度為2m的進出口,已知舊墻的維修費用為45元/m,新墻的造價為180元/m,設利用的舊墻的長度為x(單位:m),修建此矩形場地圍墻的總費用為y(單位:元). (Ⅰ)將y表示為x的函數:
(Ⅱ)試確定x,使修建此矩形場地圍墻的總費用最小,并求出最小總費用.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知直線l的傾斜角為135°,直線l1經過點A(3,2),B(a , -1),且l1與l垂直,直線l2:2x+by+1=0與直線l1平行,則a+b等于( )
A.-4
B.-2
C.0
D.2
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知 是單調遞增的等差數列,首項 ,前 項和為 ,數列 是等比數列,首項 ,且 .
(1)求數列 和 的通項公式;
(2)設 ,求數列 的前 項和 ;
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了培養(yǎng)學生的數學建模和應用能力,某校組織了一次實地測量活動,如圖,假設待測量的樹木 的高度 ,垂直放置的標桿 的高度 ,仰角 三點共線),試根據上述測量方案,回答如下問題:
(1)若測得 ,試求 的值;
(2)經過分析若干測得的數據后,大家一致認為適當調整標桿到樹木的距離 (單位:)使 與 之差較大時,可以提高測量的精確度.若樹木的實際高為 ,試問 為多少時, 最大?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com