【題目】已知 是單調(diào)遞增的等差數(shù)列,首項(xiàng) ,前 項(xiàng)和為 ,數(shù)列 是等比數(shù)列,首項(xiàng) ,且 .
(1)求數(shù)列 和 的通項(xiàng)公式;
(2)設(shè) ,求數(shù)列 的前 項(xiàng)和 ;
【答案】
(1)解:設(shè)數(shù)列 的公差為 ,數(shù)列 的公比為
則由題意得:
解得: 或
時(shí)單調(diào)遞增的等差數(shù)列, ,
,
(2)解:
則
又
,
【解析】(1)根據(jù)題意列出關(guān)于公差與公比的方程組,進(jìn)而求得兩個(gè)數(shù)列的通項(xiàng)公式;(2)根據(jù)(1)表示出數(shù)列的通項(xiàng)公式,再根據(jù)數(shù)列特征利用求得其前n項(xiàng)和.
【考點(diǎn)精析】本題主要考查了等差數(shù)列的通項(xiàng)公式(及其變式)和等比數(shù)列的通項(xiàng)公式(及其變式)的相關(guān)知識(shí)點(diǎn),需要掌握通項(xiàng)公式:或;通項(xiàng)公式:才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)盒子中裝有4個(gè)編號(hào)依次為1、2、3、4的球,這4個(gè)球除號(hào)碼外完全相同,先從盒子中隨機(jī)取一個(gè)球,該球的編號(hào)為X,將球放回袋中,然后再?gòu)拇须S機(jī)取一個(gè)球,該球的編號(hào)為Y
(1)列出所有可能結(jié)果.
(2)求事件A=“取出球的號(hào)碼之和小于4”的概率.
(3)求事件B=“編號(hào)X<Y”的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=2x3+3x2﹣12x+5. (Ⅰ)求曲線(xiàn)y=f(x)在點(diǎn)(0,5)處的切線(xiàn)方程;
(Ⅱ)求函數(shù)f(x)的極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)A(﹣1,0),B(1,0),直線(xiàn)AM與直線(xiàn)BM相交于點(diǎn)M,直線(xiàn)AM與直線(xiàn)BM的斜率分別記為kAM與kBM , 且kAMkBM=﹣2 (Ⅰ)求點(diǎn)M的軌跡C的方程;
(Ⅱ)過(guò)定點(diǎn)F(0,1)作直線(xiàn)PQ與曲線(xiàn)C交于P,Q兩點(diǎn),△OPQ的面積是否存在最大值?若存在,求出△OPQ面積的最大值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四棱錐 中, 平面 , ∥ , ,
(1)求證: 平面
(2)求證:平面 平面
(3)設(shè)點(diǎn) 為 中點(diǎn),在棱 上是否存在點(diǎn) ,使得 ∥平面 ?說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,角A、B、C所對(duì)的邊分別為a,b,c,已知
(Ⅰ)求sinC的值;
(Ⅱ)當(dāng)a=2,2sinA=sinC時(shí),求b及c的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等差數(shù)列 的公差 ,它的前 項(xiàng)和為 ,若 ,且 成等比數(shù)列.
(1)求數(shù)列 的通項(xiàng)公式 及前 項(xiàng)和 ;
(2)令 ,求數(shù)列 的前 項(xiàng)和 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系xOy中,直線(xiàn)l的參數(shù)方程為 (t為參數(shù)),以原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,⊙C的極坐標(biāo)方程為ρ=2 sinθ. (Ⅰ)寫(xiě)出⊙C的直角坐標(biāo)方程;
(Ⅱ)P為直線(xiàn)l上一動(dòng)點(diǎn),當(dāng)P到圓心C的距離最小時(shí),求P的直角坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}的首項(xiàng)a1=1,前n項(xiàng)和為Sn , 且滿(mǎn)足(n+1)an=2Sn(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=ancos(πan),求數(shù)列{bn)的前n項(xiàng)和Tn .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com