精英家教網 > 初中數學 > 題目詳情

【題目】a,b分別是數軸上兩個不同點A,B所表示的有理數,且|a|5|b|2,AB兩點在數軸上的位置如圖所示:

(1)試確定數a,b;

(2)A,B兩點相距多少個單位長度?

(3)C點在數軸上,C點到B點的距離是C點到A點距離的,求C點表示的數;

(4)PA點出發(fā),先向左移動1個單位長度,再向右移動2個單位長度,再向左移動3個單位長度,再向右移動4個單位長度,依次操作2 019次后,求P點表示的數.

【答案】1a=-5b=-2;(23;(3;(4)-1015.

【解析】

1)根據絕對值的定義結合由數軸得出a、b的符號即可得;
2)根據數軸上兩點間的距離公式即可得;
3)設C點表示的數為x,分以下兩種情況:點CA、B之間、點C在點B右側,利用兩點間距離公式列方程求解.

4)根據平移的性質可知,P點表示的數=-5-1+2-3+4-5+6+……-2017+2018-2019,計算結果即可.

解:(1)∵|a|=5,|b|=2
a=5-5b=2-2,
由數軸可知,ab0,
a=-5,b=-2;
2A、B兩點間的距離是-2--5=3;
3)設C點表示的數為x,
C點到B點的距離是C點到A點距離的,

∴點C不可能在點A左側.

下面分兩種情況討論:

當點CAB之間時,根據題意有:x--5=3-2 -x),
解得:.

當點C在點B右側時,根據題意有:x--5=3[x--2],
解得:

C點表示的數為.

4P點表示的數=-5-1+2-3+4-5+6+……-2017+2018-2019

=-5+1009-2019

=-1015.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,四邊形ABCD是菱形,∠A=60°,AB=6,扇形BEF的半徑為6,圓心角為60°,則圖中陰影部分的面積是______

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】小明在學習了《展開與折疊》這一課后,明白了很多幾何體都能展開成平面圖形.于是他在家用剪刀展開了一個長方體紙盒,可是一不小心多剪了一條棱,把紙盒剪成了兩部分,即圖中的①和②.根據你所學的知識,回答下列問題:

1)小明總共剪開了   條棱.

2)現在小明想將剪斷的②重新粘貼到①上去,而且經過折疊以后,仍然可以還原成一個長方體紙盒,你認為他應該將剪斷的紙條粘貼到①中的什么位置?請你幫助小明在圖上補 全.(請在備用圖中畫出所有可能)

3)小明說:他所剪的所有棱中,最長的一條棱是最短的一條棱的4倍.現在已知這個長方體紙盒的底面是一個正方形,并且這個長方體紙盒所有棱長的和是720cm,求這個長方體紙盒的體積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖①,矩形ABCD,AB=4,BCmm>1),點EAD邊上一定點,且AE=1.

(1)m=3,AB上存在點F,使AEF與△BCF相似,求AF的長度.

(2)如圖②,m=3.5用直尺和圓規(guī)在AB上作出所有使AEF與△BCF相似的點F(不寫作法,保留作圖痕跡)

(3)對于每一個確定的m的值,AB上存在幾個點F,使得△AEF與△BCF相似?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,在平面直角坐標系中,直線y=-x+3x軸、y軸相交于A、B兩點,點C在線段OA上,將線段CB繞著點C順時針旋轉90°得到CD,此時點D恰好落在直線AB上,過點DDEx軸于點E

1)求證:△BOC≌△CED

2)如圖2,將△BCD沿x軸正方向平移得△B'C'D',當B'C'經過點D時,求△BCD平移的距離及點D的坐標;

3)若點Py軸上,點Q在直線AB上,是否存在以C、D、P、Q為頂點的四邊形是平行四邊形?若存在,直接寫出所有滿足條件的P點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,為美化校園環(huán)境,某校計劃在一塊長為20m,寬為15m的長方形空地上修建一條寬為am)的甬道,余下的部分鋪設草坪建成綠地.

1)甬道的面積為   m2,綠地的面積為   m2(用含a的代數式表示);

2)已知某公園公司修建甬道,綠地的造價W1(元),W2(元)與修建面積S之間的函數關系如圖2所示.①園林公司修建一平方米的甬道,綠地的造價分別為   元,   元.②直接寫出修建甬道的造價W1(元),修建綠地的造價W2(元)與am)的關系式;③如果學校決定由該公司承建此項目,并要求修建的甬道寬度不少于2m且不超過5m,那么甬道寬為多少時,修建的甬道和綠地的總造價最低,最低總造價為多少元?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】計算:

19﹣(﹣5)﹣(+2+(﹣4)﹣5

2)﹣|7|++3)﹣5

3|1|﹣(+2)﹣(﹣2.75

4)﹣9÷3+×12+(﹣32

5)﹣(﹣3+(﹣9×3+17×(﹣3

6)(÷(﹣

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】課本拓展

舊知新意:

我們容易證明,三角形的一個外角等于與它不相鄰的兩個內角的和.那么,三角形的一個內角與它不相鄰的兩個外角的和之間存在怎樣的數量關系呢?

1.嘗試探究:

1如圖1,DBC與ECB分別為ABC的兩個外角,試探究A與DBC+ECB之間存在怎樣的數量關系?為什么?

2.初步應用:

2如圖2,在ABC紙片中剪去CED,得到四邊形ABDE,1=130°,則2-C= ;

3小明聯(lián)想到了曾經解決的一個問題:如圖3,在ABC中,BP、CP分別平分外角DBC、ECB,P與A有何數量關系?請利用上面的結論直接寫出答案

3拓展提升:

4如圖4,在四邊形ABCD中,BP、CP分別平分外角EBC、FCB,P與A、D有何數量關系?為什么?若需要利用上面的結論說明,可直接使用,不需說明理由

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】為厲行節(jié)能減排,倡導綠色出行,今年3月以來.“共享單車”(俗稱“小黃車”)公益活動登陸我市中心城區(qū),某公司擬在甲、乙兩個街道社區(qū)投放一批“小黃車”,這批自行車包括A、B兩種不同款型,請回答下列問題:

問題1:單價

該公司早期在甲街區(qū)進行了試點投放,共投放A、B兩型自行車各50輛,投放成本共計7500元,其中B型車的成本單價比A型車高10元,A、B兩型自行車的單價各是多少?

問題2:投放方式

該公司決定采取如下投放方式:甲街區(qū)每1000人投放a輛“小黃車”,乙街區(qū)每1000人投放 輛“小黃車”,按照這種投放方式,甲街區(qū)共投放1500輛,乙街區(qū)共投放1200輛,如果兩個街區(qū)共有15萬人,試求a的值.

查看答案和解析>>

同步練習冊答案