20.如果將拋物線y=x2+2x-1向上平移3個單位,那么所得的新拋物線的表達(dá)式是y=x2+2x+2.

分析 直接根據(jù)拋物線向上平移的規(guī)律求解.

解答 解:拋物線y=x2+2x-1向上平移3個單位得到y(tǒng)=x2+2x-1+3=x2+2x+2.
故答案為y=x2+2x+2.

點(diǎn)評 本題考查了二次函數(shù)圖象與幾何變換:由于拋物線平移后的形狀不變,故a不變,所以求平移后的拋物線解析式通?衫脙煞N方法:一是求出原拋物線上任意兩點(diǎn)平移后的坐標(biāo),利用待定系數(shù)法求出解析式;二是只考慮平移后的頂點(diǎn)坐標(biāo),即可求出解析式.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:選擇題

1.正方形ABCD的一條對角線長為8,則這個正方形的面積是( 。
A.4$\sqrt{2}$B.32C.64D.128

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

11.如圖為拋物線y=ax2+bx+c的圖象,A、B、C 為拋物線與坐標(biāo)軸的交點(diǎn),且OA=OC=1,則下列關(guān)系中正確的是(  )
A.ac<0B.a-b=1C.a+b=-1D.b>2a

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

8.如圖,為了求某條河的寬度,在它的對岸岸邊任意取一點(diǎn)A,再在河的這邊沿河邊取兩點(diǎn)B、C,使得∠ABC=60°,∠ACB=45°,量得BC的長為30m,求河的寬度(結(jié)果精確到1m).參考數(shù)據(jù):$\sqrt{2}$≈1.414,$\sqrt{3}$≈1.732,$\sqrt{5}$≈2.236.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

15.已知關(guān)于x的方程x2+2x-a+1=0沒有實(shí)數(shù)根,試判斷關(guān)于y的方程y2+ay+a=1是否一定有兩個不相等的實(shí)數(shù)根,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

5.在下列四個圖案中,不是中心對稱圖形的是( 。
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

12.入冬以來,我國中東部地區(qū)遭遇多次大范圍霧霾天氣,給人們生產(chǎn)生活造成了嚴(yán)重影響.為此“霧霾天氣的主要成因”就成為某校環(huán)保小組調(diào)查研究的課題,他們隨即調(diào)查了部分市民,并對調(diào)查結(jié)果進(jìn)行整理,繪制了如下尚不完整的統(tǒng)計圖表.
組別觀點(diǎn)頻數(shù)
A大氣氣壓低,空氣不流動80
B地面灰塵大,空氣濕度低m
C汽車尾氣排放p
D工廠造成污染120
E其他60
請根據(jù)圖表中提供的信息解答下列問題:
(1)填空:m=40,n=100.
(2)扇形統(tǒng)計圖中,表示D組的扇形圓心角的度數(shù)是108°;
(3)若該市人口約為60萬人,請你估計其中持D組“觀點(diǎn)”的市民人數(shù);
(4)若在這次接受調(diào)查的市民中,隨機(jī)抽查一人,抽中持C組“觀點(diǎn)”的人概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

9.如圖,已知數(shù)軸上有A、B、C三個點(diǎn),它們表示的數(shù)分別是18,8,-10.
(1)填空:AB=10,BC=18;
(2)若點(diǎn)A以每秒1個單位長度的速度向右運(yùn)動,同時,點(diǎn)B和點(diǎn)C分別以每秒2個單位長度和5個單位長度的速度向左運(yùn)動.試探索:BC-AB的值是否隨著時間t的變化而改變?請說明理由;
(3)現(xiàn)有動點(diǎn)P、Q都從A點(diǎn)出發(fā),點(diǎn)P以每秒1個單位長度的速度向終點(diǎn)C移動;當(dāng)點(diǎn)P移動到B點(diǎn)時,點(diǎn)Q才從A點(diǎn)出發(fā),并以每秒3個單位長度的速度向左移動,且當(dāng)點(diǎn)P到達(dá)C點(diǎn)時,點(diǎn)Q就停止移動.設(shè)點(diǎn)P移動的時間為t秒,試用含t的代數(shù)式表示P、Q兩點(diǎn)間的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

10.解下列分式方程:
(1)$\frac{4}{{x}^{2}+x}$-$\frac{1}{{x}^{2}-x}$=0
(2)$\frac{2x}{x-2}$=$\frac{7}{x-3}$+2.

查看答案和解析>>

同步練習(xí)冊答案