【題目】1)問題發(fā)現(xiàn):如圖 1,已知點 F,G 分別在直線 AB,CD 上,且 ABCD,若∠BFE=40°,∠CGE=130°,則∠GEF 的度數(shù)為 ;

2)拓展探究:∠GEF,∠BFE,∠CGE 之間有怎樣的數(shù)量關系?寫出結論并給出證明; 答:∠GEF= .

證明:過點 E EHAB

∴∠FEH=BFE ),

ABCD,EHAB,(輔助線的作法)

EHCD ),

∴∠HEG=180°-CGE ),

∴∠FEG=HFG+FEH= .

3)深入探究:如圖 2,∠BFE 的平分線 FQ 所在直線與∠CGE 的平分線相交于點 P,試探究∠GPQ 與∠GEF 之間的數(shù)量關系,請直接寫出你的結論.

【答案】190°2)∠BFE180°CGE;兩直線平行,內錯角相等;平行線的遷移性;兩直線平行,同旁內角互補;∠BFE180°CGE3)∠GPQGEF90°

【解析】

1)如圖1,過EEHAB,根據(jù)平行線的性質可得∠HEF=∠BFE40,∠HEG50,相加可得結論;

2)由①知:∠HEF=∠BFE,∠HEG+∠CGE180°,則∠HEG180°CGE,兩式相加可得∠GEF=∠BFE180°CGE

3)如圖2,根據(jù)角平分線的定義得:∠BFQBFE,∠CGPCGE,由三角形的外角的性質得:∠GPQ=∠GMFPFM=∠CGPBFQ,計算∠GPQGEF并結合②的結論可得結果.

1)如圖1,過EEHAB,

ABCD

ABCDEH,

∴∠HEF=∠BFE40°,∠HEG+∠CGE180°,

∵∠CGE130°,

∴∠HEG50°,

∴∠GEF=∠HEF+∠HEG40°50°90°;

故答案為:90°;

2)∠GEF=∠BFE180°CGE,

證明:過點 E EHAB,

∴∠FEH=BFE兩直線平行,內錯角相等),

ABCDEHAB,(輔助線的作法)

EHCD平行線的遷移性),

∴∠HEG=180°-CGE兩直線平行,同旁內角互補),

∴∠FEG=HFG+FEH=BFE180°CGE,

故答案為:∠BFE180°CGE;兩直線平行,內錯角相等;平行線的遷移性;兩直線平行,同旁內角互補;∠BFE180°CGE;

3)∠GPQGEF90°,

理由是:如圖2,∵FQ平分∠BFE,GP平分∠CGE,

∴∠BFQBFE,∠CGPCGE,

在△PMF中,∠GPQ=∠GMFPFM=∠CGPBFQ,

∴∠GPQGEFCGEBFEGEF×180°90°

即∠GPQGEF90°

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】四邊形ABCD中,對角線AC、BD相交于點O,下列條件不能判定這個四邊形是平行四邊形的是

A.ABDC,ADBC  B.AB=DC,AD=BC

C.AO=CO,BO=DO   D.ABDC,AD=BC

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形的邊長為2,為坐標原點,分別在軸、軸上,點邊的中點,過點的直線交線段于點,連接,若平分,則的值為__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直線,被直線所截,,是平面內任意一點(點不在直線,上),設,.下列各式:①,②,③,④的度數(shù)可能是(

A.①②③B.①②④C.①③④D.①②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,從點P1(﹣1,0),P2(﹣1,﹣1),P31,﹣1),P411),P5(﹣2,1),P6(﹣2,﹣2),…依次擴展下去,則P2020的坐標為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】假山具有多方面的造景功能,與建筑、植物等組合成富于變化的景致.某公園有一座假山,小亮、小慧等同學想用一些測量工具和所學的幾何知識測量這座假山的高度來檢驗自己掌握知識和運用知識的能力,如圖,在陽光下,小亮站在水平地面的D處,此時小亮身高的影子頂端與假山的影子頂端E重合,這時小亮身高CD的影長DE=2米,一段時間后,小亮從D點沿BD的方向走了3.6米到達G處,此時小亮身高的影子頂端與假山的影子頂端H重合,這時小亮身高的影長GH=2.4米,已知小亮的身高CD=FG=1.5米,點G,E,D均在直線BH上,AB⊥BH,CD⊥BH,GF⊥BH,請你根據(jù)題中提供的相關信息,求出假山的高度AB.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一般情況下是不成立的,但有些數(shù)可以使得它成立,例如:.我們稱使得成立的一對數(shù)相伴數(shù)對,記為

1)若相伴數(shù)對,試求的值;

2)請寫出一個相伴數(shù)對,其中,且,并說明理由;

3)已知相伴數(shù)對,試說明也是相伴數(shù)對

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,兩條直線,相交.

1)如果,求,的度數(shù);

2)如果,求,的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,正方形ABCD的邊長是3,E是正方形ABCD的邊AB上的點,且AE=1,EF⊥DE交BC于點F,求線段CF的長.

查看答案和解析>>

同步練習冊答案