【題目】如圖,在平面直角坐標(biāo)系中,從點(diǎn)P1(﹣1,0),P2(﹣1,﹣1),P3(1,﹣1),P4(1,1),P5(﹣2,1),P6(﹣2,﹣2),…依次擴(kuò)展下去,則P2020的坐標(biāo)為_____.
【答案】(505,505)
【解析】
根據(jù)各個(gè)點(diǎn)的位置關(guān)系,可得出下標(biāo)為4的倍數(shù)的點(diǎn)在第一象限,被4除余1的點(diǎn)在第二象限,被4除余2的點(diǎn)在第三象限,被4除余3的點(diǎn)在第四象限,點(diǎn)P2020在第一象限,且橫、縱坐標(biāo)=2020÷4,再根據(jù)第二項(xiàng)象限點(diǎn)的規(guī)律即可得出結(jié)論.
解:分析各點(diǎn)坐標(biāo)可發(fā)現(xiàn),下標(biāo)為4的倍數(shù)的點(diǎn)在第一象限,被4除余1的點(diǎn)在第二象限,被4除余2的點(diǎn)在第三象限,被4除余3的點(diǎn)在第四象限,
∵,
∴點(diǎn)P2020在第一象限,
又∵第一象限的點(diǎn)P4(1,1),點(diǎn)P8(2,2),點(diǎn)P12(3,3),
可知,點(diǎn)P2020(505,505),
故答案為:(505,505).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們定義:有一組對(duì)角相等而另一組對(duì)角不相等的凸四邊形叫做“湘一四邊形”.
(1)已知:如圖1,四邊形是“湘一四邊形”,,,.則 , ,若,,則 (直接寫(xiě)答案)
(2)已知:在“湘一四邊形”中,,,,.求對(duì)角線的長(zhǎng)(請(qǐng)畫(huà)圖求解),
(3)如圖(2)所示,在四邊形中,若,當(dāng)時(shí),此時(shí)四邊形是否是“湘一四邊形”,若是,請(qǐng)說(shuō)明理由:若不是,請(qǐng)進(jìn)一步判斷它的形狀,并給出證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我市荸薺喜獲豐收,某生產(chǎn)基地收獲荸薺40噸.經(jīng)市場(chǎng)調(diào)查,可采用批發(fā)、零售、加工銷(xiāo)售三種銷(xiāo)售方式,這三種銷(xiāo)售方式每噸荸薺的利潤(rùn)如下表:
銷(xiāo)售方式 批發(fā) 零售 加工銷(xiāo)售
利潤(rùn)(百元/噸) 12 22 30
設(shè)按計(jì)劃全部售出后的總利潤(rùn)為y百元,其中批發(fā)量為x噸,且加工銷(xiāo)售量為15噸.
(1)求y與x之間的函數(shù)關(guān)系式;
(2)若零售量不超過(guò)批發(fā)量的4倍,求該生產(chǎn)基地按計(jì)劃全部售完荸薺后獲得的最大利潤(rùn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,弦CD⊥AB,∠CAB=40°,連接BD,OD,則∠AOD+∠ABD的度數(shù)為( )
A.100°
B.110°
C.120°
D.150°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線與軸,軸分別交于,兩點(diǎn),且經(jīng)過(guò)點(diǎn).
(1)求的值;
(2)若,
①求的值;
②點(diǎn)為軸上一動(dòng)點(diǎn),點(diǎn)為坐標(biāo)平面內(nèi)另一點(diǎn),若以,,,為頂點(diǎn)的四邊形是菱形,請(qǐng)直接寫(xiě)出所有符合條件的點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)問(wèn)題發(fā)現(xiàn):如圖 1,已知點(diǎn) F,G 分別在直線 AB,CD 上,且 AB∥CD,若∠BFE=40°,∠CGE=130°,則∠GEF 的度數(shù)為 ;
(2)拓展探究:∠GEF,∠BFE,∠CGE 之間有怎樣的數(shù)量關(guān)系?寫(xiě)出結(jié)論并給出證明; 答:∠GEF= .
證明:過(guò)點(diǎn) E 作 EH∥AB,
∴∠FEH=∠BFE( ),
∵AB∥CD,EH∥AB,(輔助線的作法)
∴EH∥CD( ),
∴∠HEG=180°-∠CGE( ),
∴∠FEG=∠HFG+∠FEH= .
(3)深入探究:如圖 2,∠BFE 的平分線 FQ 所在直線與∠CGE 的平分線相交于點(diǎn) P,試探究∠GPQ 與∠GEF 之間的數(shù)量關(guān)系,請(qǐng)直接寫(xiě)出你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】南山植物園中現(xiàn)有A、B兩個(gè)園區(qū),已知A園區(qū)為長(zhǎng)方形,長(zhǎng)為(x+y)米,寬為(x﹣y)米;B園區(qū)為正方形,邊長(zhǎng)為(x+3y)米.
(1)請(qǐng)用代數(shù)式表示A、B兩園區(qū)的面積之和并化簡(jiǎn);
(2)現(xiàn)根據(jù)實(shí)際需要對(duì)A園區(qū)進(jìn)行整改,長(zhǎng)增加(11x﹣y)米,寬減少(x﹣2y)米,整改后A區(qū)的長(zhǎng)比寬多350米,且整改后兩園區(qū)的周長(zhǎng)之和為980米.
①求x、y的值;
②若A園區(qū)全部種植C種花,B園區(qū)全部種植D種花,且C、D兩種花投入的費(fèi)用與吸引游客的收益如表:
求整改后A、B兩園區(qū)旅游的凈收益之和.(凈收益=收益﹣投入)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,AB=6,AD=8,點(diǎn)E在BC邊上,且BE:EC=1:3.動(dòng)點(diǎn)P從點(diǎn)B出發(fā),沿BA運(yùn)動(dòng)到點(diǎn)A停止.過(guò)點(diǎn)E作EF⊥PE交邊AD或CD于點(diǎn)F,設(shè)M是線段EF的中點(diǎn),則在點(diǎn)P運(yùn)動(dòng)的整個(gè)過(guò)程中,點(diǎn)M運(yùn)動(dòng)路線的長(zhǎng)為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線圖像與y軸、x軸分別交于A、B兩點(diǎn)
(1)求點(diǎn)A、B坐標(biāo)和∠BAO度數(shù)
(2)點(diǎn)C、D分別是線段OA、AB上一動(dòng)點(diǎn)(不與端點(diǎn)重合),且CD=DA,設(shè)線段OC的長(zhǎng)度為x ,,請(qǐng)求出y關(guān)于x的函數(shù)關(guān)系式以及定義域
(3)點(diǎn)C、D分別是射線OA、射線BA上一動(dòng)點(diǎn),且CD=DA,當(dāng)ΔODB為等腰三角形時(shí),求C的坐標(biāo)(第(3)小題直接寫(xiě)出分類情況和答案,不用過(guò)程)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com