分析 (1)連接OD,由BD為角平分線得到一對角相等,再根據(jù)等腰三角形的性質(zhì)得出一對內(nèi)錯角相等,進(jìn)而確定出OD與BC平行,利用兩直線平行同位角相等得到∠ODA為直角,即可得證;
(2)過O作OG垂直于BE,可得出四邊形ODCG為矩形,利用勾股定理求出BG的長,由垂徑定理可得BE=2BG,中由切割線定理求出CE的長即可.
解答 (1)證明:連接OD,如圖,
∵BD為∠ABC平分線,
∴∠1=∠2,
∵OB=OD,
∴∠1=∠3,
∴∠2=∠3,
∴OD∥BC,
∵∠C=90°,
∴∠ODA=90°,
∴AC是⊙O的切線;
(2)解:過O作OG⊥BC,連接OE,
則四邊形ODCG為矩形,
∴GC=OD=OB=10,OG=CD=8,
在Rt△OBG中,利用勾股定理得:BG=6,
∵OG⊥BE,OB=OE,
∴BE=2BG=12.
解得:BE=12,
∵AC是⊙O的切線,
∴CD2=CE•CB,
即82=CE(CE+12),
解得:CE=4或CE=-16(舍去),
即CE的長為4.
點(diǎn)評 此題考查了切線的判定,等腰三角形的性質(zhì),矩形的判定與性質(zhì),平行線的判定與性質(zhì),切割線定理等知識;熟練掌握切線的判定方法是解本題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | -ab | B. | ab-1 | C. | ab | D. | ab3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 120° | B. | 135° | C. | 150° | D. | 165° |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 25° | B. | 50° | C. | 60° | D. | 30° |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com