【題目】在平面直角坐標(biāo)系中,直線與雙曲線相交于,兩點(diǎn),點(diǎn)坐標(biāo)為(-3,2),點(diǎn)坐標(biāo)為(n,-3).
(1)求一次函數(shù)和反比例函數(shù)的表達(dá)式;
(2)如果點(diǎn)是軸上一點(diǎn),且的面積是5,求點(diǎn)的坐標(biāo).
(3)利用函數(shù)圖象直接寫出關(guān)于x的不等式的解集.
【答案】(1)一次函數(shù)表達(dá)式為y=-x-1;反比例函數(shù)表達(dá)式為y=-;(2)點(diǎn)P的坐標(biāo)是(-3,0)或(1,0);(3)-3<x<0或x>0
【解析】
(1)將A坐標(biāo)代入雙曲線解析式中求出m的值,確定出雙曲線的解析式,再將A與B坐標(biāo)代入一次函數(shù)解析式中求出k與b的值,即可確定出一次函數(shù)解析式;
(2)求得直線與x軸的交點(diǎn)是(-1,0),設(shè)點(diǎn)P的坐標(biāo)是(a,0),則的底為|a+1|,利用三角形面積公式即可求得點(diǎn)P的坐標(biāo);
(3)根據(jù)一次函數(shù)與反比例函數(shù)的兩交點(diǎn)A與B的橫坐標(biāo)以及0,將x軸分為四個范圍,找出反比例圖象在一次函數(shù)圖象上方時x的范圍即可.
(1)∵雙曲線 (m≠0)過點(diǎn)A(-3,2),
∴m=-3×2=-6,
∴反比例函數(shù)表達(dá)式為.
∵點(diǎn)B(n,-3)在反比例函數(shù)的圖象上,
∴n=2,B(2,-3).
∵點(diǎn)A(-3,2)與點(diǎn)B(2,-3)在直線y=kx+b上,
∴解得
∴一次函數(shù)表達(dá)式為y=-x-1;
(2)如解圖,在x軸上任取一點(diǎn)P,連接AP,BP,由(1)知點(diǎn)B的坐標(biāo)是(2,-3).
在y=-x-1中令y=0,解得x=-1,則直線與x軸的交點(diǎn)是(-1,0).
設(shè)點(diǎn)P的坐標(biāo)是(a,0).
∵△ABP的面積是5,
∴·|a+1|·(2+3)=5,
則|a+1|=2,
解得a=-3或1.
則點(diǎn)P的坐標(biāo)是(-3,0)或(1,0).
(3) 根據(jù)圖象得: -3<x<0或x>0
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小李在景區(qū)銷售一種旅游紀(jì)念品,已知每件進(jìn)價為6元,當(dāng)銷售單價定為8元時,每天可以銷售200件.市場調(diào)查反映:銷售單價每提高1元,日銷量將會減少10件,物價部門規(guī)定:銷售單價不能超過12元,設(shè)該紀(jì)念品的銷售單價為x(元),日銷量為y(件),日銷售利潤為w(元).
(1)求y與x的函數(shù)關(guān)系式.
(2)要使日銷售利潤為720元,銷售單價應(yīng)定為多少元?
(3)求日銷售利潤w(元)與銷售單價x(元)的函數(shù)關(guān)系式,當(dāng)x為何值時,日銷售利潤最大,并求出最大利潤.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)2018年,綠云花市的張老板一共銷售兩個品種的綠色植物共900盆. 其中品種每盆20元,品種每盆30元,從銷售額為23000元,請求出銷售的品種綠色植物的數(shù)量;
(2)2019年,品種綠色植物比上一年的價格優(yōu)惠,品種綠色植物比上一年的價格優(yōu)惠.
由于市民對綠色植物的需求量持續(xù)增加,張老板售出的品種綠色植物比上一年的數(shù)量增加了,售出的品種綠色植物比上一年的數(shù)量增加了,總銷售額比上一年增加了,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=ax2+bx+3經(jīng)過點(diǎn)A(﹣1,0),B(3,0),與y軸交于點(diǎn)C.點(diǎn)D(xD,yD)為拋物線上一個動點(diǎn),其中1<xD<3.連接AC,BC,DB,DC.
(1)求該拋物線的解析式;
(2)當(dāng)△BCD的面積等于△AOC的面積的2倍時,求點(diǎn)D的坐標(biāo);
(3)在(2)的條件下,若點(diǎn)M是x軸上一動點(diǎn),點(diǎn)N是拋物線上一動點(diǎn),試判斷是否存在這樣的點(diǎn)M,使得以點(diǎn)B,D,M,N為頂點(diǎn)的四邊形是平行四邊形.若存在,求出點(diǎn)M的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某鄉(xiāng)鎮(zhèn)實施產(chǎn)業(yè)扶貧,幫助貧困戶承包了荒山種植某品種蜜柚.到了收獲季節(jié),已知該蜜柚的成本價為8元/千克,投入市場銷售時,調(diào)查市場行情,發(fā)現(xiàn)該蜜柚銷售不會虧本,且每天銷售量(千克)與銷售單價(元/千克)之間的函數(shù)關(guān)系如圖所示.
(1)求與的函數(shù)關(guān)系式,并寫出的取值范圍;
(2)當(dāng)該品種蜜柚定價為多少時,每天銷售獲得的利潤最大?最大利潤是多少?
(3)某農(nóng)戶今年共采摘蜜柚4800千克,該品種蜜柚的保質(zhì)期為40天,根據(jù)(2)中獲得最大利潤的方式進(jìn)行銷售,能否銷售完這批蜜柚?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點(diǎn)C在圓O上,BE⊥CD垂足為E,CB平分∠ABE,連接BC
(1)求證:CD為⊙O的切線;
(2)若cos∠CAB=,CE=,求AD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知實數(shù)a,b滿足a﹣b=1,a2﹣ab+1>0,當(dāng)2≤x≤3時,二次函數(shù)y=a(x﹣1)2+1(a≠0)的最大值是3,求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在“陽光體育”活動時間,甲、乙、丙、丁四位同學(xué)進(jìn)行一次乒乓球單打比賽,要從中選出兩位同學(xué)打第一場比賽.
(1)若已確定甲打第一場,再從其余三位同學(xué)中隨機(jī)選取一位,恰好選中丙同學(xué)的概率為 ;
(2)用畫樹狀圖或列表的方法,求恰好選中甲、乙兩位同學(xué)進(jìn)行比賽的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com