【題目】2022年在北京將舉辦第24屆冬季奧運(yùn)會(huì),很多學(xué)校都開展了冰雪項(xiàng)目學(xué)習(xí).如圖,滑雪軌道由AB、BC兩部分組成,AB、BC的長度都為200米,一位同學(xué)乘滑雪板沿此軌道由A點(diǎn)滑到了C點(diǎn),若AB與水平面的夾角α為20°,BC與水平面的夾角β為45°,則他下降的高度為___________米(精確到1米,,sin20o=0.3420,tan20o=0.3640,cos20o=0.9400).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)()的圖象如圖所示,對(duì)稱軸為.有下列4個(gè)結(jié)論:①;②;③;④當(dāng)時(shí),隨的增大而增大.其中,正確的結(jié)論有( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線a∥b,∠1=40°,∠2=80°,則∠3的度數(shù)為( )
[Failed to download image : http://192.168.0.10:8086/QBM/2020/6/15/2485292109684736/2491850430775296/STEM/0502255e02c3498e9234cb6eaef26eb9.png]
A.120°B.130°C.140°D.110°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明準(zhǔn)備給長米,寬米的長方形空地栽種花卉和草坪,圖中I、II、III三個(gè)區(qū)域分別栽種甲、乙、丙三種花卉,其余區(qū)域栽種草坪.四邊形和均為正方形,且各有兩邊與長方形邊重合;矩形(區(qū)域II)是這兩個(gè)正方形的重疊部分,如圖所示.
(1)若花卉均價(jià)為元,種植花卉的面積為,草坪均價(jià)為元,且花卉和草坪栽種總價(jià)不超過元,求的最大值.
(2)若矩形滿足.
①求,的長.
②若甲、乙、丙三種花卉單價(jià)分別為元,元,元,且邊的長不小于邊長的倍.求圖中I、II、III三個(gè)區(qū)域栽種花卉總價(jià)的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)與反比例函數(shù)的圖象交于A(m,6),B(3,n)兩點(diǎn).
(1)求一次函數(shù)的解析式;
(2)求的面積;
(3)根據(jù)圖象直接寫出的x的取值范圍
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在中,的角平分線交邊于.
(1)以邊上一點(diǎn)為圓心,過兩點(diǎn)作(不寫作法,保留作圖痕跡),再判斷直線與的位置關(guān)系,并說明理由;
(2)若(1)中的與邊的另一個(gè)交點(diǎn)為,,求線段與劣弧所圍成的圖形面積.(結(jié)果保留根號(hào)和)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某科技公司接到一份新型高科技產(chǎn)品緊急訂單,要求在天內(nèi)(含天)完成任務(wù),為提高生產(chǎn)效率,工廠加班加點(diǎn),接到任務(wù)的第一天就生產(chǎn)了該種產(chǎn)品件,以后每天生產(chǎn)的產(chǎn)品都比前一天多件.由于機(jī)器損耗等原因,當(dāng)日生產(chǎn)的產(chǎn)品數(shù)量達(dá)到件后,每多生產(chǎn)一件,當(dāng)天生產(chǎn)的所有產(chǎn)品平均每件成本就增加元.
(1)設(shè)第天生產(chǎn)產(chǎn)品件,求出與之間的函數(shù)解析式,并寫出自變量的取值范圍.
(2)若該產(chǎn)品每件生產(chǎn)成本(日生產(chǎn)量不超過件時(shí))為元,訂購價(jià)格為每件元,設(shè)第天的利潤為元,試求與之間的函數(shù)解析式,并求該公司哪一天獲得的利潤最大,最大利潤的是多少?
(3)該公司當(dāng)天的利潤不低于元的是哪幾天?請(qǐng)直接寫出結(jié)果.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=x2+mx(m<0)交x軸于O,A兩點(diǎn),頂點(diǎn)為點(diǎn)B.
(1)求△AOB的面積(用含m的代數(shù)式表示);
(2)直線y=kx+b(k>0)過點(diǎn)B,且與拋物線交于另一點(diǎn)D(點(diǎn)D與點(diǎn)A不重合),交y軸于點(diǎn)C.過點(diǎn)C作CE∥AB交x軸于點(diǎn)E.
(ⅰ) 若∠OBA=90°,2<<3,求k的取值范圍;
(ⅱ) 求證:DE∥y軸.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在正方形中,,是線段上的一動(dòng)點(diǎn),連接,過點(diǎn)作交于點(diǎn).以為直徑作,當(dāng)點(diǎn)從點(diǎn)移動(dòng)到點(diǎn)時(shí),對(duì)應(yīng)點(diǎn)也隨之運(yùn)動(dòng),則點(diǎn)運(yùn)動(dòng)的路程長度為____________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com