【題目】在平面直角坐標系中,點A的坐標是(03),點B的坐標是(-40.

1)畫出△AOB繞點A逆時針旋轉(zhuǎn)90°后得到的圖形△A1O1B1;并寫出點B1的坐標

2)畫出△AOB關于點P0,-1)的中心對稱圖形△A2O2B2,并寫出點B2的坐標 ;

3)若點Qx軸上的一點,當B1Q+B2 Q的和最小時,直接寫出點Q的坐標.

【答案】1)見解析,點B1的坐標為(3,-1);(2)見解析,點B2的坐標為:(4-2);(3Q,0).

【解析】

1)根據(jù)AOB繞點A逆時針旋轉(zhuǎn)90°得到的A1O1B1,即可得到點B1的坐標;

2)依據(jù)AOB關于點P0,-1)成中心對稱的三角形為A2O2B2,即可寫出點B2的坐標.

3)作點B1關于x軸的對稱點B1,連接B1′B2x軸于點Q,則點Q即為所求點,利用待定系數(shù)法求出直線B1′B2的解析式,令x=0,求出y的值即可得出P點坐標.

1)如圖所示,點B1的坐標為(3,-1);

2)如圖所示,點B2的坐標為:(4,-2);

3)(2)設直線B1′B2的解析式為y=kx+bk≠0),

B1的坐標為(3,-1),

B1的坐標為(3,1),

B2的坐標為(4,-2),

,解得

∴直線B1′B2的解析式為y=-3x+10,

∵當y=0時,x=,

Q0).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】一次演講比賽中,評委將從演講內(nèi)容、演講能力、演講效果三方面為選手打分,各項成績均按百分制,進入決賽的兩名選手的單項成績?nèi)缦卤硭荆?/span>

選手

演講內(nèi)容

演講能力

演講效果

85

95

95

95

85

95

(1)如果認為這三方面的成績同等重要,從他們的成績看,誰能勝出?

(2)如果按演講內(nèi)容占50%,演講能力占40%,演講效果占10%的比例計算甲、乙的平均成績,那么誰將勝出?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖A、B分別為數(shù)軸上的兩點,點A對應的數(shù)為-20,點B對應的數(shù)為120.

(1)請寫出線段AB的中點C對應的數(shù).

(2)P從點B出發(fā),以3個單位/秒的速度向左運動,同時點Q從點A出發(fā),以2個單位/秒的速度向右運動,當點P、Q重合時對應的數(shù)是多少?

(3)(2)的條件下,P、Q兩點運動多長時間相距50個單位長度?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,動點P每次沿著與x軸成45°的方向運動,第一次從原點O向右上方運動1個單位長度到P1,),第二次從點P1向右下方運動1個單位長度到P2,0),第三次從點p2向右下方運動2個單位長度到P32,-),第四次從點P3向右上方動2個單位長度到P430),第五次從點P4向右上方運動3個單位長度到P5,),第六次從點P5向右下方運動3個單位長度到P66,0……依此規(guī)律下去,則P43的坐標為( 。

A. 242-11B. 242,11

C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2016年泉州市初中體育中考中,隨意抽取某校5位同學一分鐘跳繩的次數(shù)分別為158,160,154,158,170,則由這組數(shù)據(jù)得到的結(jié)論錯誤的是( 。

A. 平均數(shù)為160 B. 中位數(shù)為158 C. 眾數(shù)為158 D. 方差為20.3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)y=x+4的圖象與反比例函數(shù)y=k為常數(shù),且k≠0)的圖象交于A1,a),B兩點.

1)求反比例函數(shù)的表達式及點B的坐標;

2)在x軸上找一點P,使PA+PB的值最小,求滿足條件的點P的坐標及PAB的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】大課間是學校的校體課程之一,涉及的范圍廣,內(nèi)容繁多。某校根據(jù)實際情況決定開設:乒乓球,:籃球,:跑步,:跳繩四種運動項目,為了了解學生最喜歡哪一項運動,隨機抽取了600名學生進行調(diào)查,并將調(diào)查結(jié)果繪制成如下的統(tǒng)計圖,結(jié)合圖中信息解答下列問題:

1)補全條形統(tǒng)計圖;

2)制作扇形統(tǒng)計圖;

3)若該校有學生2400人,請問:喜歡打乒乓球的學生人數(shù)大約有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知RtΔABC,C=90°,D為BC的中點.以AC為直徑的圓O交AB于點E.

(1)求證:DE是圓O的切線.

(2)若AE:EB=1:2,BC=6,求AE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】12分)如圖是某種窗戶的形狀,其上部是半圓形,下部是邊長相同的四個小正方形,已知下部的小正方形的邊長為am,計算:

1)窗戶的面積;

2)窗框的總長;

3)若a1,窗戶上安裝的是玻璃,玻璃每平方米25元,窗框每米20元,窗框的厚度不計,求制作這種窗戶需要的費用是多少元(π取3.14,結(jié)果保留整數(shù)).

查看答案和解析>>

同步練習冊答案