【題目】如圖所示,已知二次函數(shù)y=ax2+bx+c的圖象與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,對(duì)稱軸為直線x=1.直線y=﹣x+c與拋物線y=ax2+bx+c交于C、D兩點(diǎn),D點(diǎn)在x軸下方且橫坐標(biāo)小于3,則下列結(jié)論:①2a+b+c>0; ②a﹣b+c<0; ③x(ax+b)≤a+b; ④a<﹣1.
其中正確的是( 。
A. ①②③④B. ①②③C. ②③D. ①②
【答案】A
【解析】
利用拋物線與y軸的交點(diǎn)位置得到c>0,利用對(duì)稱軸方程得到b=2a,則2a+b+c=c>0,于是可對(duì)①進(jìn)行判斷;利用拋物線的對(duì)稱性得到拋物線與x軸的另一個(gè)交點(diǎn)在點(diǎn)(1,0)右側(cè),則當(dāng)x=1時(shí),y<0,于是可對(duì)②進(jìn)行判斷;根據(jù)二次函數(shù)的性質(zhì)得到x=1時(shí),二次函數(shù)有最大值,則ax2+bx+c≤a+b+c,于是可對(duì)③進(jìn)行判斷;由于直線y=x+c與拋物線y=ax2+bx+c交于C、D兩點(diǎn),D點(diǎn)在x軸下方且橫坐標(biāo)小于3,利用函數(shù)圖象得x=3時(shí),一次函數(shù)值比二次函數(shù)值大,即9a+3b+c<3+c,然后把b=2a代入解a的不等式,則可對(duì)④進(jìn)行判斷.
解:∵拋物線與y軸的交點(diǎn)在x軸上方,
∴c>0,
∵拋物線的對(duì)稱軸為直線x==1,
∴b=2a,
∴2a+b+c=2a2a+c=c>0,所以①正確;
∵拋物線與x軸的一個(gè)交點(diǎn)在點(diǎn)(3,0)左側(cè),
而拋物線的對(duì)稱軸為直線x=1,
∴拋物線與x軸的另一個(gè)交點(diǎn)在點(diǎn)(1,0)右側(cè),
∴當(dāng)x=1時(shí),y<0,
∴ab+c<0,所以②正確;
∵x=1時(shí),二次函數(shù)有最大值,
∴ax2+bx+c≤a+b+c,
∴ax2+bx≤a+b,所以③正確;
∵直線y=x+c與拋物線y=ax2+bx+c交于C、D兩點(diǎn),D點(diǎn)在x軸下方且橫坐標(biāo)小于3,
∴x=3時(shí),一次函數(shù)值比二次函數(shù)值大,
即9a+3b+c<3+c,
而b=2a,
∴9a6a<3,解得a<1,所以④正確.
故選:A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,菱形ABCD的邊AD⊥EF,垂足為點(diǎn)E,點(diǎn)H是菱形ABCD的對(duì)稱中心.若FC=,EF=DE,則菱形ABCD的邊長(zhǎng)為( 。
A.B.3C.4D.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知A,B兩地相距120千米,甲、乙兩人沿同一條公路從A地出發(fā)到B地,乙騎自行車,甲騎摩托車,圖中DE,OC分別表示甲、乙離開(kāi)A地的路程s(單位:千米)與時(shí)間t(單位:小時(shí))的函數(shù)關(guān)系的圖象,設(shè)在這個(gè)過(guò)程中,甲、乙兩人相距y(單位:千米),則y關(guān)于t的函數(shù)圖象是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知等腰三角形ADC,AD=AC,B是線段DC上的一點(diǎn),連結(jié)AB,且有AB=DB.
(1)求證:△ADB∽△CDA;
(2)若DB=2,BC=3,求AD的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,正方形ABCD的頂點(diǎn)A、B的坐標(biāo)分別為(0,2)、(1,0),頂點(diǎn)C在函數(shù)y=x2+bx-1的圖象上,將正方形ABCD沿x軸正方向平移后得到正方形A′B′C′D′,點(diǎn)D的對(duì)應(yīng)點(diǎn)D′落在拋物線上,則點(diǎn)D與其對(duì)應(yīng)點(diǎn)D′之間的距離為 ______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】等腰△ABC的直角邊AB=BC=10cm,點(diǎn)P、Q分別從A、C兩點(diǎn)同時(shí)出發(fā),均以1cm/秒的相同速度作直線運(yùn)動(dòng),已知P沿射線AB運(yùn)動(dòng),Q沿邊BC的延長(zhǎng)線運(yùn)動(dòng),PQ與直線AC相交于點(diǎn)D.設(shè)P點(diǎn)運(yùn)動(dòng)時(shí)間為t,△PCQ的面積為S.
(1)求出S關(guān)于t的函數(shù)關(guān)系式;
(2)當(dāng)點(diǎn)P運(yùn)動(dòng)幾秒時(shí),S△PCQ=S△ABC?
(3)作PE⊥AC于點(diǎn)E,當(dāng)點(diǎn)P、Q運(yùn)動(dòng)時(shí),線段DE的長(zhǎng)度是否改變?證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“江畔”禮品店在十一月份從廠家購(gòu)進(jìn)甲、乙兩種不同禮品.購(gòu)進(jìn)甲種禮品共花費(fèi)1500元,購(gòu)進(jìn)乙種禮品共花費(fèi)1050元,購(gòu)進(jìn)甲種禮品數(shù)量是購(gòu)進(jìn)乙種禮品數(shù)量的2倍,且購(gòu)進(jìn)一件乙種禮品比購(gòu)進(jìn)一件甲種禮品多花20元.
⑴求購(gòu)進(jìn)一件甲種禮品、一件乙種禮品各需多少元;
⑵元旦前夕,禮品店決定再次購(gòu)進(jìn)甲、乙兩種禮品共50個(gè).恰逢該廠家對(duì)兩種禮品的價(jià)格進(jìn)行調(diào)整,一件甲種禮品價(jià)格比第一次購(gòu)進(jìn)時(shí)提高了20%,一件乙種禮品價(jià)格比第一次購(gòu)進(jìn)時(shí)降低了5元.如果此次購(gòu)進(jìn)甲、乙兩種禮品的總費(fèi)用不超過(guò)3100元,那么這家禮品店最少可購(gòu)進(jìn)多少件甲種禮品?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,AB=3,AD=4,以對(duì)角線的一半為邊依次作平行四邊形,則=__________,=_________________ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,AB=4cm,BC=3cm,點(diǎn)P從點(diǎn)A出發(fā),沿A→B→C向終點(diǎn)C勻速運(yùn)動(dòng),在邊AB,BC上分別以4cm/s,3cm/s的速度運(yùn)動(dòng),同時(shí)點(diǎn)Q從點(diǎn)A出發(fā),沿A→D→C向終點(diǎn)C勻速運(yùn)動(dòng),在邊AD,DC上分別以3cm/s,4cm/s的速度運(yùn)動(dòng),連接PQ,設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(s),四邊形PBDQ的面積為S(cm2).
(1)當(dāng)點(diǎn)P到達(dá)邊AB的中點(diǎn)時(shí),求PQ的長(zhǎng);
(2)求S與t之間的函數(shù)解析式,并寫出自變量t的取值范圍;
(3)連接DP,當(dāng)直線DP將矩形ABCD分成面積比為1:5兩部分時(shí),直接寫出t的值,并寫出此時(shí)S的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com