如圖,點O為矩形ABCD的對稱中心,AB=10cm,BC=12cm,點E、F、G分別從A、B、C三點同時出發(fā),沿矩形的邊按逆時針方向勻速運動,點E的運動速度為1cm/s,點F的運動速度為3cm/s,點G的運動速度為1.5cm/s,當點F到達點C(即點F與點C重合)時,三個點隨之停止運動.在運動過程中,△EBF關于直線EF的對稱圖形是△EB′F.設點E、F、G運動的時間為t(單位:s).
(1)當t= s時,四邊形EBFB′為正方形;
(2)若以點E、B、F為頂點的三角形與以點F,C,G為頂點的三角形相似,求t的值;
(3)是否存在實數t,使得點B′與點O重合?若存在,求出t的值;若不存在,請說明理由.
(1)2.5 (2)t=2.8s或t=(-14+2)s (3)不存在,理由見解析
解析解:(1)若四邊形EBFB′為正方形,則BE=BF,
即:10-t=3t,
解得t=2.5;
(2)分兩種情況,討論如下:
①若△EBF∽△FCG,
則有,即,
解得:t=2.8;
②若△EBF∽△GCF,
則有,即,
解得:t=-14-2(不合題意,舍去)或t=-14+2.
∴當t=2.8s或t=(-14+2)s時,以點E、B、F為頂點的三角形與以點F,C,G為頂點的三角形相似.
(3)假設存在實數t,使得點B′與點O重合.
如圖,過點O作OM⊥BC于點M,則在Rt△OFM中,OF=BF=3t,FM=BC-BF=6-3t,OM=5,
由勾股定理得:OM2+FM2=OF2,
即:52+(6-3t)2=(3t)2
解得:t=;
過點O作ON⊥AB于點N,則在Rt△OEN中,OE=BE=10-t,EN=BE-BN=10-t-5=5-t,ON=6,
由勾股定理得:ON2+EN2=OE2,
即:62+(5-t)2=(10-t)2
解得:t=3.9.
∵≠3.9,
∴不存在實數t,使得點B′與點O重合.
科目:初中數學 來源: 題型:填空題
如圖所示,正方形ABCD的邊長為2,點E、F分別為邊AB、AD 的中點,點G是CF上的一點,使得3 CG =2 GF,則三角形BEG的面積為 .
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
在數學課上,同學們研究圖形的拼接問題.
比如:兩個全等的等腰直角三角形紙片既能拼成一個大的等腰直角三角形(如圖1),也能拼成一個正方形(如圖2).
(1)現有兩個相似的直角三角形紙片,各有一個角為,恰好可以拼成另一個含有30°角的直角三角形,那么在原來的兩個三角形紙片中,較大的與較小的紙片的相似比為________,請畫出拼接的示意圖;
(2)現有一個矩形恰好由三個各有一個角為的直角三角形紙片拼成,請你畫出兩種不同拼法的示意圖.在拼成這個矩形的三角形中,若每種拼法中最小的三角形的斜邊長為,請直接寫出每種拼法中最大三角形的斜邊長.
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
如圖,△ABC的頂點坐標分別為A(1,3)、B(4,2)、C(2,1).
(1)作出與△ABC關于x軸對稱的△A1B1C1,并寫出點A1的坐標;
(2)以原點O為位似中心,在原點的另一側畫出△A2B2C2,使=,并寫出點A2的坐標。
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
已知:如圖9,在△ABC中,已知點D在BC上,聯結AD,使得,DC=3且 ﹦1﹕2.
(1)求AC的值;
(2)若將△ADC沿著直線AD翻折,使點C落點E處,AE交邊BC于點F,且AB∥DE,求的值.
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
如圖,在平面直角坐標系中,△ABC和△是以坐標原點O為位似中心的位似圖形,且點B(3,1),B′(6,2).
(1)請你根據位似的特征并結合點B的坐標變化回答下列問題: ①若點A(,3),則A′的坐標為 ;②△ABC與△的相似比為 ;
(2)若△ABC的面積為m,求△A′B′C′的面積.(用含m的代數式表示)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com