精英家教網 > 初中數學 > 題目詳情

如圖,點O為矩形ABCD的對稱中心,AB=10cm,BC=12cm,點E、F、G分別從A、B、C三點同時出發(fā),沿矩形的邊按逆時針方向勻速運動,點E的運動速度為1cm/s,點F的運動速度為3cm/s,點G的運動速度為1.5cm/s,當點F到達點C(即點F與點C重合)時,三個點隨之停止運動.在運動過程中,△EBF關于直線EF的對稱圖形是△EB′F.設點E、F、G運動的時間為t(單位:s).

(1)當t=           s時,四邊形EBFB′為正方形;
(2)若以點E、B、F為頂點的三角形與以點F,C,G為頂點的三角形相似,求t的值;
(3)是否存在實數t,使得點B′與點O重合?若存在,求出t的值;若不存在,請說明理由.

(1)2.5  (2)t=2.8s或t=(-14+2)s  (3)不存在,理由見解析

解析解:(1)若四邊形EBFB′為正方形,則BE=BF,
即:10-t=3t,
解得t=2.5;
(2)分兩種情況,討論如下:
①若△EBF∽△FCG,
則有,即,
解得:t=2.8;
②若△EBF∽△GCF,
則有,即,
解得:t=-14-2(不合題意,舍去)或t=-14+2
∴當t=2.8s或t=(-14+2)s時,以點E、B、F為頂點的三角形與以點F,C,G為頂點的三角形相似.
(3)假設存在實數t,使得點B′與點O重合.
如圖,過點O作OM⊥BC于點M,則在Rt△OFM中,OF=BF=3t,FM=BC-BF=6-3t,OM=5,
由勾股定理得:OM2+FM2=OF2
即:52+(6-3t)2=(3t)2
解得:t=;

過點O作ON⊥AB于點N,則在Rt△OEN中,OE=BE=10-t,EN=BE-BN=10-t-5=5-t,ON=6,
由勾股定理得:ON2+EN2=OE2,
即:62+(5-t)2=(10-t)2
解得:t=3.9.
≠3.9,
∴不存在實數t,使得點B′與點O重合.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:填空題

如圖所示,正方形ABCD的邊長為2,點E、F分別為邊AB、AD 的中點,點G是CF上的一點,使得3 CG =2 GF,則三角形BEG的面積為       .

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

在數學課上,同學們研究圖形的拼接問題.
比如:兩個全等的等腰直角三角形紙片既能拼成一個大的等腰直角三角形(如圖1),也能拼成一個正方形(如圖2).

(1)現有兩個相似的直角三角形紙片,各有一個角為,恰好可以拼成另一個含有30°角的直角三角形,那么在原來的兩個三角形紙片中,較大的與較小的紙片的相似比為________,請畫出拼接的示意圖;
(2)現有一個矩形恰好由三個各有一個角為的直角三角形紙片拼成,請你畫出兩種不同拼法的示意圖.在拼成這個矩形的三角形中,若每種拼法中最小的三角形的斜邊長為,請直接寫出每種拼法中最大三角形的斜邊長.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

如圖,△ABC的頂點坐標分別為A(1,3)、B(4,2)、C(2,1).

(1)作出與△ABC關于x軸對稱的△A1B1C1,并寫出點A1的坐標;
(2)以原點O為位似中心,在原點的另一側畫出△A2B2C2,使,并寫出點A2的坐標。

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

已知:如圖正方形ABCD,E是BC的中點,F在AB上,且BF=,猜想EF與DE的位置關系,并說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

如圖,在△ABC中,D是邊AB的中點,DE∥BC交AC于點E.求證:AE=EC

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

如圖,已知在△ABC中,點D、E分別在邊AB和AC上,DE∥BC,;(2)求作向量(不要求寫作法,但要指出所作圖中表示結論的向量)。

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

已知:如圖9,在△ABC中,已知點D在BC上,聯結AD,使得,DC=3且 ﹦1﹕2.

(1)求AC的值;
(2)若將△ADC沿著直線AD翻折,使點C落點E處,AE交邊BC于點F,且AB∥DE,求的值.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

如圖,在平面直角坐標系中,△ABC和△是以坐標原點O為位似中心的位似圖形,且點B(3,1),B′(6,2).

(1)請你根據位似的特征并結合點B的坐標變化回答下列問題: ①若點A(,3),則A′的坐標為         ;②△ABC與△的相似比為        ;
(2)若△ABC的面積為m,求△A′B′C′的面積.(用含m的代數式表示)

查看答案和解析>>

同步練習冊答案