如圖,在平面直角坐標(biāo)系中,△ABC和△是以坐標(biāo)原點O為位似中心的位似圖形,且點B(3,1),B′(6,2).

(1)請你根據(jù)位似的特征并結(jié)合點B的坐標(biāo)變化回答下列問題: ①若點A(,3),則A′的坐標(biāo)為         ;②△ABC與△的相似比為        ;
(2)若△ABC的面積為m,求△A′B′C′的面積.(用含m的代數(shù)式表示)

(1)①A′(5,6),②1:2;(2)4m.

解析試題分析:(1)利用位似是特殊的相似,若兩個圖形△ABC和△A′B′C′以原點為位似中心,相似比是k,△ABC上一點的坐標(biāo)是(x,y),則在△A′B′C′中,它的對應(yīng)點的坐標(biāo)是(kx,ky)或(-kx,ky).
(2)利用面積比等于位似比的平方得出即可.
試題解析:(1)①A′(5,6),②1:2;
(2)∵△ABC與△的相似比為1:2 
,∴

考點: 1.位似變換;2.坐標(biāo)與圖形性質(zhì);3.相似三角形的性質(zhì).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,點O為矩形ABCD的對稱中心,AB=10cm,BC=12cm,點E、F、G分別從A、B、C三點同時出發(fā),沿矩形的邊按逆時針方向勻速運動,點E的運動速度為1cm/s,點F的運動速度為3cm/s,點G的運動速度為1.5cm/s,當(dāng)點F到達點C(即點F與點C重合)時,三個點隨之停止運動.在運動過程中,△EBF關(guān)于直線EF的對稱圖形是△EB′F.設(shè)點E、F、G運動的時間為t(單位:s).

(1)當(dāng)t=           s時,四邊形EBFB′為正方形;
(2)若以點E、B、F為頂點的三角形與以點F,C,G為頂點的三角形相似,求t的值;
(3)是否存在實數(shù)t,使得點B′與點O重合?若存在,求出t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,在中,,,.求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知△ABC是等腰直角三角形,∠A=90°,點D是腰AC上的一個動點,過C作CE垂直于BD的延長線,垂足為E.

(1)若BD是AC邊上的中線,如圖1,求的值;
(2)若BD是∠ABC的角平分線,如圖2,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

老師要求同學(xué)們在圖①中內(nèi)找一點P,使點P到OM、ON的距離相等.
小明是這樣做的:在OM、ON上分別截取OA=OB,連結(jié)AB,取AB中點P,點P即為所求.
請你在圖②中的內(nèi)找一點P,使點P到OM的距離是到ON距離的2倍.要求:簡單敘述做法,并對你的做法給予證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

閱讀理解:
如圖1,若在四邊形ABCD的邊AB上任取一點E(點E與點A,B不重合),分別連結(jié)ED,EC,可以把四邊形ABCD分成三個三角形,如果其中有兩個三角形相似,我們就把E叫做四邊形ABCD的邊AB上的相似點;如果這三個三角形都相似,我們就把E叫做四邊形ABCD的邊AB上的強相似點.解決問題:
(1)如圖1,若∠A=∠B=∠DEC=55°,試判斷點E是否是四邊形ABCD的邊AB上的相似點,并說明理由;
(2)如圖2,在矩形ABCD中,AB=5,BC=2,且A,B,C,D四點均在正方形網(wǎng)格(網(wǎng)格中每個小正方形的邊長為1)的格點(即每個小正方形的頂點)上,試在圖2中畫出矩形ABCD的邊AB上的一個強相似點E;
拓展探究:
(3)如圖3,將矩形ABCD沿CM折疊,使點D落在AB邊上的點E處.若點E恰好是四邊形ABCM的邊AB上的一個強相似點,請直接寫出的值.

圖1                 圖2                       圖3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,矩形ABCD中,AD=3厘米,AB=a厘米(a>3).動點M,N同時從B點出發(fā),分別沿B?A,B?C運動,速度是1厘米/秒.過M作直線垂直于AB,分別交AN,CD于P,Q.當(dāng)點N到達終點C時,點M也隨之停止運動.設(shè)運動時間為t秒.

(1)若a=4厘米,t=1秒,則PM= _________ 厘米;
(2)若a=5厘米,求時間t,使△PNB∽△PAD,并求出它們的相似比;
(3)若在運動過程中,存在某時刻使梯形PMBN與梯形PQDA的面積相等,求a的取值范圍;
(4)是否存在這樣的矩形:在運動過程中,存在某時刻使梯形PMBN,梯形PQDA,梯形PQCN的面積都相等?若存在,求a的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

閱讀下面的材料:
小明遇到一個問題:如圖(1),在□ABCD中,點E是邊BC的中點,點F是線段AE上一點,BF的延長線交射線CD于點G. 如果,求的值.

他的做法是:過點E作EH∥AB交BG于點H,則可以得到△BAF∽△HEF.
請你回答:(1)AB和EH的數(shù)量關(guān)系為    ,CG和EH的數(shù)量關(guān)系為    ,的值為    .
(2)如圖(2),在原題的其他條件不變的情況下,如果,那么的值為    (用含a的代數(shù)式表示).

(3)請你參考小明的方法繼續(xù)探究:如圖(3),在四邊形ABCD中,DC∥AB,點E是BC延長線上一點,AE和BD相交于點F. 如果,那么的值為    (用含m,n的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,已知AB是⊙O的弦,OB=2,∠B=30°,C是弦AB上一點(不與點A、B重合),連結(jié)CO并延長CO交⊙O于點D,連結(jié)AD.

(1)求弦長AB的長度;(結(jié)果保留根號);
(2)當(dāng)∠D=20°時,求∠BOD的度數(shù).

查看答案和解析>>

同步練習(xí)冊答案