【題目】如圖,在矩形中,,點(diǎn)在直線(xiàn)上,與直線(xiàn)相交所得的銳角為60°.點(diǎn)在直線(xiàn)上,,直線(xiàn),垂足為點(diǎn),以為直徑,在的左側(cè)作半圓,點(diǎn)是半圓上任一點(diǎn).

發(fā)現(xiàn):的最小值為_________,的最大值為__________與直線(xiàn)的位置關(guān)系_________.

思考:矩形保持不動(dòng),半圓沿直線(xiàn)向左平移,當(dāng)點(diǎn)落在邊上時(shí),求半圓與矩形重合部分的周長(zhǎng)和面積.

【答案】, 10 , ,.

【解析】

發(fā)現(xiàn):先依據(jù)勾股定理求得AO的長(zhǎng),然后由圓的性質(zhì)可得到OM=3,當(dāng)點(diǎn)MAO上時(shí),AM有最小值,當(dāng)點(diǎn)M與點(diǎn)E重合時(shí),AM有最大值,然后過(guò)點(diǎn)BBGl,垂足為G,接下來(lái)求得BG的長(zhǎng),從而可證明四邊形OBGF為平行四邊形,于是可得到OB與直線(xiàn)1的位置關(guān)系.
思考:連結(jié)OG,過(guò)點(diǎn)OOHEG,依據(jù)垂徑定理可知GE=2HE,然后在△EOH中,依據(jù)特殊銳角三角函數(shù)值可求得HE的長(zhǎng),從而得到EG的長(zhǎng),接下來(lái)求得∠EOG得度數(shù),依據(jù)弧長(zhǎng)公式可求得弧EG的長(zhǎng),利用扇形面積減去三角形面積即可得到面積.

解:發(fā)現(xiàn):由題意可知OM=OF=3,AF=8,EFl,
OA=
當(dāng)點(diǎn)M在線(xiàn)段OA上時(shí),AM有最小值,最小值為=
當(dāng)點(diǎn)M與點(diǎn)E重合時(shí),AM有最大值,最大值=
如圖1所示:過(guò)點(diǎn)BBGl,垂足為G

∵∠DAF=60°,∠BAD=90°,
∴∠BAG=30°.
GB=AB=3
OF=BG=3,
又∵GBOF,
∴四邊形OBGF為平行四邊形,
OBFG,即OBl

故答案為:,10;

思考:如圖2所示:連結(jié),過(guò)點(diǎn),

,

,

,

的長(zhǎng),

半圓與矩形重合部分的周長(zhǎng)

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】RtABC中,∠ABC90°,BD為∠ABC的角平分線(xiàn),FAC的中點(diǎn),AEBCBD的延長(zhǎng)線(xiàn)于點(diǎn)E,其中∠FBC2FBD

1)求∠EDC的度數(shù).

2)求證:BFAE

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地為打造宜游環(huán)境,對(duì)旅游道路進(jìn)行改造.如圖是風(fēng)景秀美的觀景山,從山腳B到山腰D沿斜坡已建成步行道,為方便游客登頂觀景,欲從DA修建電動(dòng)扶梯,經(jīng)測(cè)量,山高AC154米,步行道BD168米,∠DBC30°,在D處測(cè)得山頂A的仰角為45°.求電動(dòng)扶梯DA的長(zhǎng)(結(jié)果保留根號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有一條拋物線(xiàn),三位學(xué)生分別說(shuō)出了它的一些性質(zhì):甲說(shuō):對(duì)稱(chēng)軸是直線(xiàn);乙說(shuō):與軸的兩個(gè)交點(diǎn)的距離為6;丙說(shuō):頂點(diǎn)與軸的交點(diǎn)圍成的三角形面積等于9,則這條拋物線(xiàn)解析式的頂點(diǎn)式是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,將正方形繞點(diǎn)逆時(shí)針旋轉(zhuǎn)45°后得到正方形.依此方式,繞點(diǎn)連續(xù)旋轉(zhuǎn)2020次,得到正方形,如果點(diǎn)的坐標(biāo)為,那么點(diǎn)的坐標(biāo)為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形中,點(diǎn)為原點(diǎn),點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,拋物線(xiàn)經(jīng)過(guò)點(diǎn)、,與交于點(diǎn)

備用圖

⑴求拋物線(xiàn)的函數(shù)解析式;

⑵點(diǎn)為線(xiàn)段上一個(gè)動(dòng)點(diǎn)(不與點(diǎn)重合),點(diǎn)為線(xiàn)段上一個(gè)動(dòng)點(diǎn),,連接,設(shè),的面積為.求關(guān)于的函數(shù)表達(dá)式;

⑶拋物線(xiàn)的頂點(diǎn)為,對(duì)稱(chēng)軸為直線(xiàn),當(dāng)最大時(shí),在直線(xiàn)上,是否存在點(diǎn),使以、、、為頂點(diǎn)的四邊形是平行四邊形,若存在,請(qǐng)寫(xiě)出符合條件的點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有這樣一個(gè)問(wèn)題:探究函數(shù)y=的圖象與性質(zhì).小美根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)函數(shù)y=的圖象與性質(zhì)進(jìn)行了探究下面是小美的探究過(guò)程,請(qǐng)補(bǔ)充完整:

(1)函數(shù)y=的自變量x的取值范圍是 ;

(2)下表是y與x的幾組對(duì)應(yīng)值.

x

-2

-1

1

2

3

4

y

0

-1

m

求m的值;

(3)如圖,在平面直角坐標(biāo)系xOy中,描出了以上表中各對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn).根據(jù)描出的點(diǎn),畫(huà)出該函數(shù)的圖象;

(4)結(jié)合函數(shù)的圖象,寫(xiě)出該函數(shù)的一條性質(zhì): .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,四邊形是矩形,點(diǎn),點(diǎn),點(diǎn).以點(diǎn)為中心,順時(shí)針旋轉(zhuǎn)矩形,得到矩形,點(diǎn)的對(duì)應(yīng)點(diǎn)分別為,記旋轉(zhuǎn)角為

(1)如圖①,當(dāng)時(shí),求點(diǎn)的坐標(biāo);

(2)如圖②,當(dāng)點(diǎn)落在的延長(zhǎng)線(xiàn)上時(shí),求點(diǎn)的坐標(biāo);

(3)當(dāng)點(diǎn)落在線(xiàn)段上時(shí),求點(diǎn)的坐標(biāo)(直接寫(xiě)出結(jié)果即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:如果一元二次方程滿(mǎn)足a+b+c=0,我們稱(chēng)這個(gè)方程為鳳凰方程.已知是鳳凰方程,且有兩個(gè)相等的實(shí)數(shù)根,則下列正確的是( 。

A.a=cB.a=bC.b=cD.a=b=c

查看答案和解析>>

同步練習(xí)冊(cè)答案