【題目】如圖,矩形ABCD的對(duì)角線ACBD相交于點(diǎn)O,DE平分ADC,若BDE=15°,則OEC 的度數(shù)為_________

【答案】75°

【解析】

根據(jù)角平分線的定義和已知求出∠CDE =45°,∠ODC=60°,結(jié)合矩形的性質(zhì)可得△EDC為等腰直角三角形,△OCD為等邊三角形,由OC=EC利用三角形內(nèi)角和定理求解即可.

解:在矩形ABCD中,DE平分∠ADC,∠BDE=15°

∴∠ADE=CDE=ADC=45°,

∴∠ODC=15°+45°=60°,△EDC為等腰直角三角形,

OC=OD,

∴△OCD為等邊三角形,

OC=CD,CD=EC,

OC=EC,

∵∠OCE=90°60°=30°,

∴∠OEC=EOC=180°30°÷2=75°

故答案為:75°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】彈簧掛上物體后會(huì)伸長(zhǎng), ,測(cè)得一彈簧的長(zhǎng)度ycm)與所掛物體的質(zhì)量xkg)有如下關(guān)系:

1)請(qǐng)寫出彈簧總長(zhǎng)ycm)與所掛物體質(zhì)量xkg)之間的函數(shù)關(guān)系式;

2)當(dāng)掛重10千克時(shí)彈簧的總長(zhǎng)是多少?

3)當(dāng)彈簧總長(zhǎng)為16.5cm時(shí),所掛物體重多少千克?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,方格紙中的每個(gè)小方格都是邊長(zhǎng)為1個(gè)單位長(zhǎng)度的正方形,每個(gè)小正方形的頂點(diǎn)叫格點(diǎn),△ABC的頂點(diǎn)均在格點(diǎn)上,O,M也在格點(diǎn)上.

1)畫出△ABC先向右平移5個(gè)單位長(zhǎng)度,再向下平移5個(gè)單位長(zhǎng)度得到的△A'B'C';

2)畫出△ABC關(guān)于直線OM對(duì)稱的△A1B1C1;

3)畫出△ABC繞點(diǎn)O按順時(shí)針方向旋轉(zhuǎn)90°后所得的△A2B2C2

4)△A1B1C1與△A2B2C2組成的圖形是軸對(duì)稱圖形嗎?如果是軸對(duì)稱圖形,請(qǐng)畫出對(duì)稱軸.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2018112日﹣4日,江西省中小學(xué)生研學(xué)實(shí)踐教育推進(jìn)會(huì)和全國(guó)中小學(xué)綜合實(shí)踐活動(dòng)(研學(xué)實(shí)踐教育)論壇相繼在撫州舉行.為拓寬學(xué)生視野,引導(dǎo)學(xué)生主動(dòng)適應(yīng)社會(huì),促進(jìn)書本知識(shí)和生活經(jīng)驗(yàn)的深度融合,撫州市某中學(xué)決定組織部分班級(jí)去仙蓋山開展研學(xué)旅行活動(dòng),在參加此次活動(dòng)的師生中,若每位老師帶17個(gè)學(xué)生,還剩12個(gè)學(xué)生沒人帶;若每位老師帶18個(gè)學(xué)生,就有一位老師少帶4個(gè)學(xué)生.參加此次研學(xué)旅行活動(dòng)的老師和學(xué)生各有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,Rt△ABC中,ACB=90°,AC=6,BC=8,DAB上一動(dòng)點(diǎn),過點(diǎn)DDEAC于點(diǎn)EDFBC于點(diǎn)F,連接EF,則線段EF的最小值是(  )

A. 4B. 4.6C. 4.8D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD內(nèi)部有若干個(gè)點(diǎn),用這些點(diǎn)以及正方形ABCD的頂點(diǎn)A、B、C、D把原正方形分割成一些三角形(互相不重疊):

1)填寫下表:

正方形ABCD內(nèi)點(diǎn)的個(gè)數(shù)

1

2

3

4

n

分割成的三角形的個(gè)數(shù)

4

6

   

   

   

2)原正方形能否被分割成2019個(gè)三角形?若能,求此時(shí)正方形ABCD內(nèi)部有多少個(gè)點(diǎn)?若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,四邊形ABCD是矩形,已知PB=PC.

(1)P是矩形外一點(diǎn),求證:PA=PD

(2)P是矩形邊AD(BC)上的一點(diǎn),則PA PD;

(3)若點(diǎn)P在矩形ABCD內(nèi)部,上述結(jié)論是否仍然成立?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知a、b、c滿足|a﹣|++(c﹣42=0.

(1)求a、b、c的值;

(2)判斷以a、b、c為邊能否構(gòu)成三角形?若能構(gòu)成三角形,此三角形是什么形狀?并求出三角形的面積;若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在網(wǎng)格中,小正方形邊長(zhǎng)為a,則圖中是直角三角形的是_____

查看答案和解析>>

同步練習(xí)冊(cè)答案