【題目】如圖,在四邊形ABCD中,BD為一條對角線,AD∥BC,AD=2BC,∠ABD=90°,E為AD的中點,連接BE.
(1)求證:四邊形BCDE為菱形;
(2)連接AC,若AC平分∠BAD,AB=2,求菱形BCDE的面積.
【答案】(1)見解析;(2)2.
【解析】
(1)根據(jù)菱形的判定證明即可;
(2)根據(jù)等邊三角形的性質菱形的性質和三角函數(shù)解答即可.
(1)證明:∵E為AD的中點,
∴AD=2DE=2AE,
∵AD=2BC,
∴DE=BC,
又∵AD∥BC,
∴四邊形BCDE為平行四邊形,
∵∠ABD=90°,E為AD中點,
∴在Rt△ABD中,AD=2BE,
∴BE=DE,
∴四邊形BCDE為菱形;
(2)解:過點BF⊥AD于點F,如圖所示:
∵AC平分∠BAD,
∴∠BAC=∠DAC,
又∵AD∥BC,
∴∠BCA=∠DAC,
∴∠BCA=∠BAC,
∴AB=BC,
∴AB=BC=BE=DE=AE=2,
∴△ABE為等邊三角形,
∴∠BAE=60°,∠BDA=30°
∴在Rt△ABD中,BD=AB=2
∴在Rt△BDF中,BF=BD=,
∴菱形BCDE的面積=DE×BF=2.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,BC的垂直平分線EF交∠ABC的平分線BD于E,如果∠BAC=60°,∠ACE=24°,那么∠BCE的大小是( )
A. 24° B. 30° C. 32° D. 36°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠ABC=90°,D是邊AC上的一點,連接BD,使∠A=2∠1,E是BC上的一點,以BE為直徑的⊙O經(jīng)過點D.
(1)求證:AC是⊙O的切線;
(2)若∠A=60°,⊙O的半徑為2,求陰影部分的面積.(結果保留根號和π)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,線段AB的長度為2,AB所在直線上方存在點C,使得△ABC為等腰三角形,設△ABC的面積為S.當S=___________時,滿足條件的點C恰有三個.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】
(已有經(jīng)驗)
我們已經(jīng)研究過作一個圓經(jīng)過兩個已知點,也研究過作一個圓與已知角的兩條邊都相切,尺規(guī)作圖如圖所示:
(遷移經(jīng)驗)
(1)如圖①,已知點M和直線l,用兩種不同的方法完成尺規(guī)作圖:求作⊙O,使⊙O過M點,且與直線l相切.(每種方法作出一個圓即可,保留作圖痕跡,不寫作法)
(問題解決)
如圖②,在Rt△ABC中,∠C=90°,AC=8,BC=6.
(2)已知⊙O經(jīng)過點C,且與直線AB相切.若圓心O在△ABC的內部,則⊙O半徑r的取值范圍為 .
(3)點D是邊AB上一點,BD=m,請直接寫出邊AC上使得∠BED為直角時點E的個數(shù)及相應的m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點C、D在圓上,,過點C作CE⊥AD交AD的延長線于點E.
(1)求證:CE是⊙O的切線;
(2)已知BC=3,AC=4,求CE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,AB、BC是半徑為的⊙O內的兩條弦,且AB=6,BC=8.(1)若∠ABC=90°,則=________;(2)若∠ABC=120°,則=______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,AC是弦,D是弧的中點,過點D作DE⊥AC交AC的延長線于點E.
(1)求證:DE是⊙O的切線;
(2)當AB=10,AC=時,求弧的長;
(3)當AB=20時,直接寫出△ABC面積最大時,點D到直徑AB的距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com