【題目】已知,AB、BC是半徑為O內(nèi)的兩條弦,且AB=6,BC=8.(1)若∠ABC=90°,則=________;(2)若∠ABC=120°,則=______.

【答案】5, .

【解析】

當∠ABC=90°時,則AC是直徑,直接由勾股定理易求半徑;當∠ABC=120°時,連接OA,OC,過OOEAC于點E, CCDABAB的延長線于點D.利用解直角三角形的方法先求出BD,CD,再求出AC,最后求出OA.

解:(1)若∠ABC=90°,則AC是直徑,

中,

;

2)若∠ABC=120°,如圖,連接OA,OC,過OOEAC于點E, CCDABAB的延長線于點D.

則有∠DBC=60°,∠D=90°,∠AOC=120°,OE平分∠AOC,AE=CE

∴∠BCD=30°,∠AOE=60°

,

AD=AB+BD=10

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD中,EBC的中點,CGDEG,BG延長交CD于點F,CG延長交BD于點H,交ABN.下列結(jié)論:①DE=CN;②;③SDEC=3SBNH;④∠BGN=45°;⑤.其中正確結(jié)論的個數(shù)有( )

A.2B.3C.4D.5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】初中數(shù)學代數(shù)知識中,方程、函數(shù)、不等式存在著緊密的聯(lián)系,請閱讀下列兩則材料,回答問題:

利用函數(shù)圖象找方程解的范圍.設(shè)函數(shù),當時,;當時,.則函數(shù)的圖象經(jīng)過兩個點,而點軸下方,點軸上方,則該函數(shù)圖象與軸交點橫坐標必大于-2,小于-1.故,方程的有解,且該解的范圍為.

材料二:

解一元二次不等式.異號兩數(shù)相乘,結(jié)果為負可得:

情況①,得,則

情況②,得,則無解

故,的解集為.

1)請根據(jù)材料一解決問題:已知方程有唯一解,且為整數(shù)),求整數(shù)的值.

2)請結(jié)合材料一與材料二解決問題:若關(guān)于的方程的解分別為,且,,求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,BD為一條對角線,AD∥BC,AD=2BC,∠ABD=90°,E為AD的中點,連接BE.

(1)求證:四邊形BCDE為菱形;

(2)連接AC,若AC平分∠BAD,AB=2,求菱形BCDE的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,O為坐標原點,已知點F20),直線GFy軸正半軸于點G,且∠GFO=30°


1)直接寫出點G的坐標;
2)若⊙O的半徑為1,點P是直線GF上的動點,直線PA、PB分別約⊙O相切于點A、B
①求切線長PB的最小值;
②問:在直線GF上是夠存在點P,使得∠APB=60°,若存在,請求出P點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=BC∠ABC=90°,DAB上一動點,連接CD,以CD為直徑的⊙MAC于點E,連接BM并延長交AC于點F,交⊙M于點G,連接BE

1)求證:點B⊙M上.

2)當點D移動到使CD⊥BE時,求BCBD的值.

3)當點D到移動到使時,求證:AE+CF=EF

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,Ax軸上一點,以OA為直徑的作半圓M,點BOA上一點,以OB為邊作OBDC交半圓MC,D兩點.

1)連接AD,求證:DADB;

2)若A點坐標為(200),點B的坐標是(16,0),求點C的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,過點CCD//AB,EAC的中點,連接DE并延長,交AB于點F,交CB的延長線于點G.連接ADCF

(1)求證:四邊形AFCD是平行四邊形;

(2)GB3,BC6,BF1,求AB的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,拋物線yx2的圖象如圖所示.已知A點坐標為(1,1),過點AAA1x軸交拋物線于點A1,過點A1A1A2OA交拋物線于點A2,過點A2A2A3x軸交拋物線于點A3,過點A3A3A4OA交拋物線于點A4……,依次進行下去,則點A2019的坐標為_______

查看答案和解析>>

同步練習冊答案